

Product handbook

Drilling

THE TECHNOLOGY OF GAINING BENEFIT

Competence in solid carbide drilling

	2	General	introduction	to	the	sub	jec	t
--	---	---------	--------------	----	-----	-----	-----	---

Programme overview

Product information 16

- 16 Solid carbide drills
 - 16 X-treme Step 90
 - 18 X-treme without internal cooling
 - 20 X-treme with internal cooling
 - 22 X-treme Plus

 - 24 X-treme CI
 - 26 X-treme Inox 28 X-treme M, DM8..30
 - 30 X-treme Pilot Step 90
 - 32 XD70 Technology

34 Walter Select

36 Cutting data

CONTENTS

Drilling

56	Tech	no	loav

- 56 The tool
 - 57 Designations
 - 58 Cutting materials
 - 60 Surface treatments and hard material coatings
 - 62 X-treme drill family
 - 70 Internal coolant supply
 - 72 Shank shapes
 - 73 Clamping devices
- 74 The hole
 - 74 Drilling operations
 - 76 Surface quality
 - 77 Accuracy of the drilled hole
 - 78 Hole run-off
 - 79 H7 hole tolerance
- 80 The application
 - 80 Coolant/MQL/dry
 - 82 HSC/HPC machining
 - 85 Deep-hole drilling Pilot holes
 - 86 Drilling strategies
 - 92 Deep-hole drilling Solid carbide and gun drills
 - 93 Micromachining
 - 94 Wear
 - 100 Problems Causes Solutions

106 Formulae and tables

- 106 Drilling calculation formulae
- 107 Hardness comparison table
- 108 Thread tapping core diameters
- 110 Thread forming core diameters

Competence in solid carbide drilling

This is the strength of **Walter Titex**. Founded in 1890 in Frankfurt am Main by Ludwig Günther, the brand draws on over 120 years' experience in drilling metals.

Numerous innovations mark **Walter Titex**'s successful journey. At the start
of the twentieth century, the brand
succeeded in using carbide tools to reach
drilling depths that had been thought
impossible. Thanks to its experiences in
HSS, **Walter Titex** was a global pioneer
among manufacturers in this sector.

The tools made by the competence brand are highly economical in that the cost of drilling each hole is low without compromising on hole quality.

Some things do not change with time: Our promise to deliver a standard of service that matches our outstanding tools, so that our customers can draw even greater benefit from them, has not changed since 1890.

Should you require more detailed information about our products, we have provided page references to sections within this handbook (HB), to the Walter General Catalogue 2012 (GK) and to the Walter Supplementary Catalogue 2013/2014 (EK).

Productivity - Gaps in productivity - Costs pie chart

Gaps in productivity

In most sectors, the general increase in costs is higher than the increase in price of products on the market. We can help you to close these "gaps in productivity".

Costs pie chart

Tool costs account for approx. 4% of machining costs.

Productivity

Productivity is understood as the relationship between the unit of input and the rate of output. The aim is always to achieve the greatest possible output from the least possible input.

The basic premise of "tool economics": The price of a tool accounts for only 4% of the total manufacturing costs. However its efficiency affects the remaining 96%.

Example 1:

A 25% decrease in the price of a tool only results in a 1% saving in the total manufacturing costs. By contrast, a 30% increase in the cutting data reduces the total manufacturing costs by 10%.

1:10

Example 2:

Potential increase in productivity gained by using Walter Titex solid carbide deephole drills.

Solid carbide drills with internal cooling

Operation		3 x D _c 3 x			
Drilling depth	3 x			ι D _c	
Designation	K3299XPL	K3899XPL	A3289DPL	A3293TTP	
Туре	X-treme Step 90	X-treme Step 90	X-treme Plus	X-treme Inox	
Ø range	3.30 - 14.00	3.30 - 14.00	3.00 - 20.00	3.00 - 20.00	
Shank	DIN 6535 HA	DIN 6535 HE	DIN 6535 HA	DIN 6535 HA	
Page	EK B-75	EK B-77	GK B 70	EK B-30	
	8	8		8	

Operation					
Drilling depth		5 x	r D _c		
Designation	A3382XPL	A3399XPL	A3999XPL	A3387	
Туре	X-treme CI	X-treme	X-treme	Alpha® Jet	
Ø range	3.00 - 20.00	3.00 - 25.00	3.00 - 25.00	4.00 - 20.00	
Shank	DIN 6535 HA	DIN 6535 HA	DIN 6535 HE	DIN 6535 HA	
Page	GK B 81	EK B-45	EK B-62	GK B 85	

Operation					
Drilling depth	8 x	D _c	12	x D _c	
Designation	A3486TIP	A3586TIP	A6589AMP	A6588TML	
Туре	Alpha® 44	Alpha® 44	X-treme DM12	Alpha® 4 Plus Micro	
Ø range	5.00 – 12.00	5.00 – 12.00	2.00 - 2.90	1.00 - 1.90	
Shank	DIN 6535 HA	DIN 6535 HE	DIN 6535 HA	DIN 6535 HA	
Page	GK B 94	GK B 96	EK B-68	GK B 126	

 $Page information \ refers \ to: \\ HB = this \ handbook \cdot GK = Walter \ General \ Catalogue \ 2012 \cdot EK = Walter \ Supplementary \ Catalogue \ 2013/2014$

3 x	D _c	5 x D _c		
A3299XPL	A3899XPL	A3389AML	A3389DPL	A3393TTP
X-treme	X-treme	X-treme M	X-treme Plus	X-treme Inox
3.00 - 20.00	3.00 - 20.00	2.00 - 2.95	3.00 - 20.00	3.00 - 20.00
DIN 6535 HA	DIN 6535 HE	DIN 6535 HA	DIN 6535 HA	DIN 6535 HA
EK B-33	EK B-54	EK B-41	GK B 86	EK B-42
0	V	1		

5 x D _c	8 x D _c				
A3384	A6489AMP	A6488TML	A6489DPP	A3487	
Alpha® Ni	X-treme DM8	Alpha® 4 Plus Micro	X-treme D8	Alpha® Jet	
3.00 – 12.00	2.00 – 2.95	0.75 - 1.95	3.00 - 20.00	5.00 – 20.00	
DIN 6535 HA	DIN 6535 HA	DIN 6535 HA	DIN 6535 HA	DIN 6535 HA	
GK B 84	EK B-67	GK B 121	GK B 123	GK B 95	
X		Ĭ			

12 :	c D _c	16	κ D _c
A6589DPP	A3687	A6689AMP	A6685TFP
X-treme D12	Alpha® Jet	X-treme DM16	Alpha® 4 XD16
3.00 - 20.00	5.00 - 20.00	2.00 - 2.90	3.00 - 16.00
DIN 6535 HA	DIN 6535 HA	DIN 6535 HA	DIN 6535 HA
GK B 127	GK B 97	EK B-69	GK B 130
	ij.	1	

Solid carbide drills with internal cooling

Operation					
Drilling depth		20 x D _c		25 x D _c	
Designation	A6789AMP	A6794TFP	A6785TFP	A6889AMP	
Туре	X-treme DM20	X-treme DH20	Alpha® 4 XD20	X-treme DM25	
Ø range	2.00 - 2.90	3.00 - 10.00	3.00 - 16.00	2.00 - 2.90	
Shank	DIN 6535 HA	DIN 6535 HA	DIN 6535 HA	DIN 6535 HA	
Page	EK B-70	GK B 133	GK B 131	EK B-71	
	1			1	

Operation				
Drilling depth	40 x D _c	50 x D _c		
Designation	A7495TTP	A7595TTP		
Туре	X-treme D40	X-treme D50		
Ø range	4.50 - 11.00	4.50 - 9.00		
Shank	DIN 6535 HA	DIN 6535 HA		
Page	EK B-73	HB 49, HB 68		
	6	6		

25 x D _c		30 x D _c	
A6885TFP	A6989AMP	A6994TFP	A6985TFP
Alpha® 4 XD25	X-treme DM30	X-treme DH30	Alpha® 4 XD30
3.00 - 12.00	2.00 - 2.90	3.00 - 10.00	3.00 – 12.00
DIN 6535 HA	DIN 6535 HA	DIN 6535 HA	DIN 6535 HA
GK B 134	EK B-72	GK B 137	GK B 136
	ğ		

Pilot				
K3281TFT	A6181AML	A6181TFT	A7191TFT	K5191TFT
X-treme Pilot Step 90	X-treme Pilot 150	XD Pilot	X-treme Pilot 180	X treme Pilot 180C
3.00 - 16.00	2.00 - 2.95	3.00 - 16.00	3.00 - 20.00	4.00 - 7.00
DIN 6535 HA	DIN 6535 HA	DIN 6535 HA	DIN 6535 HA	DIN 6535 HA
EK B-74	EK B-66	GK B 118	GK B 138	GK B 140
Y	Ž.	8	Ø	Ø

Solid carbide drills without internal cooling

Operation					
Drilling depth	3 x D _c		3 x D _c		
Designation	K3879XPL	A3279XPL	A3879XPL	A3269TFL	
Туре	X-treme Step 90	X-treme	X-treme	Alpha® Rc	
Ø range	3.30 - 14.50	3.00 - 20.00	3.00 - 20.00	3.40 - 10.40	
Shank	DIN 6535 HE	DIN 6535 HA	DIN 6535 HE	DIN 6535 HA	
Page	EK B-76	EK B-26	EK B-50	GK B 65	
	8	8	8		

Operation						
Drilling depth		5 x	D _c			
Designation	A3378TML	A3162	A3379XPL	A3979XPL		
Туре	Alpha® 2 Plus Micro	ESU	X-treme	X-treme		
Ø range	0.50 - 2.95	0.10 - 1.45	3.00 - 25.00	3.00 - 25.00		
Shank	DIN 6535 HA	Parallel shank	DIN 6535 HA	DIN 6535 HE		
Page	GK B 79	GK B 59	EK B-37	EK B-58		
		8				

Operation				
Drilling depth	3 x D _c – Cai	3 x D _c – Carbide-tipped		ot drill
Designation	A2971	A5971	A1174	A1174C
Туре	Carbide	Carbide	90°	120°
Ø range	3.00 - 16.00	8.00 - 32.00	3.00 - 20.00	3.00 - 20.00
Shank	Parallel shank	Morse taper	Parallel shank	Parallel shank
Page	GK B 58	GK B 116	GK B 53	GK B 54
	•	*	8	8

3 x D_c

3 7 50						
A1164TIN	A1163	A1166TIN	A1166	A1167A	A1167B	
Alpha® 2	N	Maximiza	Maximiza	Maximiza	Maximiza	
1.50 - 20.00	1.00 - 12.00	3.00 - 20.00	3.00 - 20.00	3.00 - 20.00	3.00 - 20.00	
Parallel shank						
GK B 38	GK B 36	GK B 46	GK B 42	GK B 47	GK B 50	
	8					

5 x	D _c		8 x D _c	
A3367	A3967	A6478TML	A1276TFL	A1263
BSX	BSX	Alpha® 2 Plus Micro	Alpha® 22	N
3.00 - 16.00	3.00 - 16.00	0.50 - 2.95	3.00 - 12.00	0.60 - 12.00
DIN 6535 HA	DIN 6535 HE	DIN 6535 HA	Parallel shank	Parallel shank
GK B 77	GK B 110	GK B 119	GK B 57	GK B 55
8	8		2	8

HSS drills

Operation						
Drilling depth		~ 3	x D _c			
Designation	A1149XPL	A1149TFL	A1154TFT	A1148		
Dimensions	DIN 1897	DIN 1897	DIN 1897	DIN 1897		
Туре	UFL®	UFL®	VA Inox	UFL®		
Ø range	1.00 - 20.00	1.00 - 20.00	2.00 - 16.00	1.00 - 20.00		
Shank	Parallel shank	Parallel shank	Parallel shank	Parallel shank		
Page	GK B 163	GK B 158	GK B 168	GK B 153		
	8	8	8	8		

Operation						
Drilling depth			~ 8 x D _c			
Designation	A1249XPL	A1249TFL	A1254TFT	A1247	A1244	
Dimensions	DIN 338	DIN 338	DIN 338	DIN 338	DIN 338	
Туре	UFL®	UFL®	VA Inox	Alpha® XE	VA	
Ø range	1.00 - 16.00	1.00 - 20.00	3.00 - 16.00	1.00 - 16.00	0.30 - 15.00	
Shank	Parallel shank	Parallel shank	Parallel shank	Parallel shank	Parallel shank	
Page	GK B 212	GK B 208	GK B 216	GK B 204	GK B 199	
					E.	
		,				

Operation						
Drilling depth		~ 12	2 x D _c			
Designation	A1549TFP	A1547	A1544	A1522		
Dimensions	DIN 340	DIN 340	DIN 340	DIN 340		
Туре	UFL®	Alpha® XE	VA	UFL®		
Ø range	1.00 - 12.00	1.00 - 12.70	1.00 - 12.00	1.00 - 22.225		
Shank	Parallel shank	Parallel shank	Parallel shank	Parallel shank		
Page	GK B 230	GK B 227	GK B 225	GK B 221		
	8	8	E	8		

 $Page information \ refers \ to: \\ HB = this \ handbook \cdot GK = Walter \ General \ Catalogue \ 2012 \cdot EK = Walter \ Supplementary \ Catalogue \ 2013/2014$

~ 3 x	D _c		~ 5 x D _c	
A1111	A2258	A3143	A3153	A6292TIN
DIN 1897	Walter standard	DIN 1899	DIN 1899	Walter standard
N	UFL® left	ESU	ESU left	MegaJet
0.50 - 32.00	1.00 - 20.00	0.05 - 1.45	0.15 - 1.4	5.00 - 24.00
Parallel shank	Parallel shank	Parallel shank	Parallel shank	DIN 1835 E
GK B 141	GK B 239	GK B 243	GK B 245	GK B 269
8		8	8	8

~ 8 x D_c

	~ 8 x D _c						
A1222	A1211TIN	A1211	A1212	A1234	A1231		
DIN 338	DIN 338	DIN 338	DIN 338	DIN 338	DIN 338		
UFL®	N	N	Н	UFL® left	N left		
1.00 - 16.00	0.50 - 16.00	0.20 - 22.00	0.40 - 16.00	1.016 - 12.70	0.20 - 20.00		
Parallel shank	Parallel shank	Parallel shank	Parallel shank	Parallel shank	Parallel shank		
GK B 185	GK B 180	GK B 171	GK B 182	GK B 195	GK B 190		
S					8		

~ 12 x D _c	~ 16 x D _c	~ 22 x D _c	~ 30 x D _c
A1511	A1622	A1722	A1822
DIN 340	DIN 1869-I	DIN 1869-II	DIN 1869-III
N	UFL®	UFL®	UFL®
0.50 - 22.00	2.00 - 12.70	3.00 - 12.00	3.50 - 12.00
Parallel shank	Parallel shank	Parallel shank	Parallel shank
GK B 218	GK B 232	GK B 235	GK B 236
	38	8	S.
Parallel shank	Parallel shank	Parallel shank	Parallel s

HSS drills

Operation							
Drilling depth	~ 60 x D _c	~ 60 x D _c					
Designation	A1922S	A1922L	A4211TIN	A4211	A4244		
Dimensions	Walter standard	Walter standard	DIN 345	DIN 345	DIN 345		
Туре	UFL®	UFL®	N	N	VA		
Ø range	6.00 - 14.00	8.00 - 12.00	5.00 - 30.00	3.00 - 100.00	10.00 - 32.00		
Shank	Parallel shank	Parallel shank	Morse taper	Morse taper	Morse taper		
Page	GK B 238	GK B 237	GK B 255	GK B 247	GK B 256		
		8			8		

Operation			
	NC sp	ot drill	
Designation	A1115 · A1115S · A1115L	A1114 · A1114S · A1114L	
Dimensions	Walter standard	Walter standard	
Туре	90°	120°	
Ø range	2.00 - 25.40	2.00 - 25.40	
Shank	Parallel shank	Parallel shank	
Page	GK B 149	GK B 146	
	N.		

Operation		
	Twist drill set	The state of the s
Dimensions	DIN 338	and the sales of the last
Туре	N; VA; UFL®	
Shank	Parallel shank	
Page	GK B 346	

~ 8 x D _c	~ 12	x D _c	~ 16	x D _c	~ 22 x D _c
A4247	A4422	A4411	A4622	A4611	A4722
DIN 345	DIN 341	DIN 341	DIN 1870-I	DIN 1870-I	DIN 1870-II
Alpha® XE	UFL®	N	UFL®	N	UFL®
10.00 - 40.00	10.00 - 31.00	5.00 - 50.00	12.00 - 30.00	8.00 - 50.00	8.00 - 40.00
Morse taper	Morse taper	Morse taper	Morse taper	Morse taper	Morse taper
GK B 258	GK B 263	GK B 260	GK B 267	GK B 265	GK B 268
X		*			8

Multi-diameter step drill			Taper pin drill	
K6221	K6222	K6223	K2929	K4929
DIN 8374	DIN 8378	DIN 8376	DIN 1898 A	DIN 1898 B
90°	90°	180°		
3.20 - 8.40	2.50 - 10.20	4.50 - 11.00	1.00 - 12.00	5.00 - 25.00
Parallel shank	Parallel shank	Parallel shank	Parallel shank	Morse taper
GK B 273	GK B 274	GK B 275	GK B 271	GK B 272
8	1	1	8	8

Walter Titex X-treme Step 90

Walter Titex X-treme Step 90

Type: K3299XPL, HA shank, 3 x D_C

The tool

- Solid carbide high-performance chamfer drill with and without internal cooling
- XPL coating
- Diameter range 3.3 to 14.5 mm
 - Core hole diameter: M4-M16 x 1.5 mm
- Step length in accordance with DIN 8378
- Shank in accordance with DIN 6535 HA and HF

The application

- For thread/core hole diameters
- For ISO material groups P, M, K, N, S, H
- Can be used with emulsion and oil
- Can be used for inclined exits and cross holes
- Can be used for inclined and convex surfaces
- For use in general mechanical engineering, mould and die making, and the automotive and energy industries

Watch product video: Scan this QR code or go directly to http://goo.gl/MvBTg

Benefits for you

- 50% higher productivity
- Can be universally used for all material groups as well as for cross holes and inclined exits
- Improved hole quality thanks to the 4 lands

Walter Titex X-treme Step 90

Types: K3899XPL, HE shank, 3 x D_C K3299XPL, HA shank, 3 x D_C K3879XPL, HE shank, 3 x D_C

Workpiece material: St52

Tool: X·treme Step 90

K3299XPL-M8

Diameter 6.8 mm

Cutting data

	compention	v.ri eille 2reh an
Vc	98 m/min	98 m/min
n	4600 rpm	4600 rpm
f	0.16 mm/rev	0.23 mm/rev
vf	736 mm/min	1058 mm/min

Walter Titex X-treme - without internal cooling

Walter Titex X-treme

Types: A3279XPL, HA shank, 3 x D_C A3879XPL, HE shank, 3 x D_C

The tool

- Solid carbide high-performance drill with internal cooling
- XPL coating
- 140° point angle
- Dimensions to
 - Dimensions to
- DIN 6537 K → 3 x D_C
 DIN 6537 L → 5 x D_C
- DII 0337 E 73 X DC
- Diameter range 3 to 25 mm
- Shank in accordance with DIN 6535 HA and HE

Watch product video: Scan this QR code or go directly to http://goo.ql/dzSSy

The application

- For all ISO material groups P. M. K. N. S. H.
- Can be used with emulsion and oil
- Can be used for inclined exits and cross holes
- Can be used for inclined and convex surfaces
- For use in general mechanical engineering, mould and die making, and the automotive and energy industries

Benefits for you

- 50% higher productivity
- Can be universally used for all material groups as well as for cross holes and inclined exits
- Improved hole quality thanks to the 4 lands

Walter Titex X-treme

Types: A3379XPL, HA shank, 5 x D_C A3979XPL, HE shank, 5 x D_C

Walter Titex X-treme - with internal cooling

Walter Titex X-treme

Types: A3299XPL, HA shank, 3 x D_C A3899XPL, HE shank, 3 x D_C

The tool

- Solid carbide high-performance drill with internal cooling
- XPL coating
- 140° point angle
- Dimensions to
 - DIN 6537 K → 3 x D_c
 - DIN 6537 L → 5 x D_C
- Diameter range 3 to 25 mm
- Shank in accordance with

Benefits for you

- 50% higher productivity
- Can be universally used for all material groups as well as for cross holes and inclined exits
- Improved hole quality thanks to the 4 lands

The application

- For all ISO material groups P. M. K. N. S. H.
- Can be used with emulsion and oil
- Can be used for inclined exits and cross holes
- Can be used for inclined and convex surfaces
- For use in general mechanical engineering, mould and die making, and the automotive and energy industries

Walter Titex X-treme

Types: A3399XPL, HA shank, 5 x D_C A3999XPL, HE shank, 5 x D_C

500

Watch product video: Scan this QR code or go directly to http://goo.gl/dzSSy

1000

Walter Titex X-treme Plus

Walter Titex X-treme Plus

Types: A3289DPL, HA shank, 3 x D_C A3389DPL, HA shank, 5 x D_C

The tool

- Solid carbide high performance drill with internal coolant supply
- New type of multifunctional double coating (DPL: "Double Performance Line")
- 140° point angle
- Dimensions in accordance with
 - DIN 6537 K → 3 x D_c
 - DIN 6537 L → 5 x D_c
- Diameter range 3 to 20 mm
- Shank according to DIN 6535 HA

The application

- For all ISO material groups P, M, K, S, H (N)
- Can be used with emulsion, oil and minimum quantity lubrication
- For use in general mechanical engineering, in mould and die making, and the automotive and energy industries

Benefits for you

- Maximum productivity: At least double that achievable using conventional tools (greater productivity, lower production costs)
- Alternatively: Double the tool life with conventional cutting data (e.g. fewer tool changes)
- Excellent surface finish
- High process reliability
- Varied application possibilities with regard to materials and application (e.g. MQL)
- Ensures spare machine capacity

With this tool, Walter Titex is setting new standards in drilling with solid carbide tools. The drill incorporates a wealth of innovations – including the new multifunctional double coating (DPL) that has outstanding properties. With Walter Titex X-treme Plus you can increase productivity in the series production of steel components.

Walter Titex X-treme CI

Walter Titex X-treme CI

Type: A3382XPL, HA shank, 5 x D_C

The tool

- Solid carbide high-performance drill with internal cooling
- XPL coating
- 140° point angle
- Dimensions according to
 - DIN 6537 L → 5 x D_C
- Diameter range 3 to 20 mm
- Shank according to DIN 6535 HA

The application

- For ISO material group K
- Can be used with emulsion, oil, minimum quantity lubrication and dry machining
- For use in general mechanical engineering, in mould and die making, and in the automotive and energy industries

Benefits for you

- Increase in productivity thanks to 50% higher workpiece values in comparison with conventional solid carbide drills
- Optimum hole quality for blind holes and through holes thanks to special facet → no chipping at the hole exit
- High process reliability thanks to very even wear behaviour when machining cast iron materials

Walter Titex X-treme Inox

Walter Titex X-treme Inox

Type: A3393TTP, HA shank, 5 x D_C

The tool

- Solid carbide high-performance drill
- TTP coating
- Dimensions to
 - DIN 6537 K → 3 x D_c
 - DIN 6537 L → 5 x D_C
- Diameter range 3 to 20 mm
- Shank according to DIN 6535 HA

The application

- For ISO material group M
- Can be used with emulsion and oil
- For use in general mechanical engineering and in the automotive, aerospace, medical, food and valve industries

Benefits for you

- Reduced cutting forces due to new type of geometry
- Significant increase in productivity over universal drilling tools
- Low burr formation on entry and exit
- Excellent surface quality on component
- Stable main cutting edges guarantee maximum process reliability

Tip geometry for reduced cutting forces, low burr formation and stable cutting edges

Workpiece material: Tool:

1.4542 X-treme Inox

A3393TTP-14.2 Diameter 14.2 mm

Cutting data

	Competition	X-treme Inox
Vc	60 m/min	70 m/min
n	1345 rpm	1570 rpm
f	0.2 mm/rev	0.3 mm/rev
vf	269 mm/min	471 mm/min

Tool life (m)

Feed rate (mm/min)

Watch product video: Scan this QR code or go directly to http://goo.gl/96NSH

Walter Titex X-treme M, DM8..30

The tool

- Solid carbide high-performance drill with internal cooling
- AML coating (AITiN)
- AMP coating (AITiN tip coating)
- Available in the following sizes:
 - 2 x D_c X-treme Pilot 150
 - 5 x D_c X-treme M
 - 8 x D_c X-treme DM8
 - 12 x Dc X-treme DM12
 - 16 x D_C X-treme DM16
 - 20 x Dr X-treme DM20
 - 25 x D_c X-treme DM25
 - 30 x D_c X-treme DM30
- Diameter range 2 to 2.95 mm
- Shank according to DIN 6535 HA

The application

- ISO material groups P, M, K, N, S, H, O
- Drilling with emulsion and oil
- For use in general mechanical engineering, mould and die making, and the automotive and energy industries

Benefits for you

- Measurable increases in productivity due to machining values which are up to 50% higher than conventional solid carbide micro-drills
- New types of point and flute geometry ensure high process reliability
- Polished flutes ensure reliable chip evacuation

Workpiece material: 1.4571 Tool: X-treme DM12 A5589AMP-2 Diameter 2 mm

Demo component

Cutting data

	Previous	X-treme DM12
VC	50 m/min	60 m/min
n	7960 rpm	9550 rpm
f	0.04 mm/rev	0.06 mm/rev
vf	320 mm/min	573 mm/min

Walter Titex X-treme Pilot Step 90

Walter Titex X-treme Pilot Step 90

Type: K3281TFT, HA shank, 2 x D_C

The tool

- Solid carbide high-performance chamfering pilot drill with internal cooling
- TFT coating
- 150° point angle
- 90° countersink angle
- Dimensions according to Walter standard
- Drilling depth
 - 2 x D_c
- Diameter range 3 to 16 mm
- Shank according to DIN 6535 HA

The application

- For the ISO material groups P, M, K, N. S. H
- Step pilot drill for solid carbide deep-hole drills from the Alpha® and X-treme drill families for drilling depths of approx. 12 x D_C
- Can be used with emulsion and oil
- For use in general mechanical engineering, in the hydraulic industry, in mould and die making, and in the automotive and energy industries

Other Walter Titex pilot drills

Benefits for you

- Higher process reliability and tool life in deep-hole drilling
- Significantly reduced hole run-off
- No tolerance overlaps with solid carbide deep-hole drills
- High positioning accuracy as a result of a short chisel edge width

Walter Titex XD70 Technology

The tool

- Solid carbide high-performance drill with internal cooling
- TTP tip coating
- Dimensions:
 - Up to 50 x D_c as a standard tool
 - 60-70 x D_C as a special tool
- Diameter range 4.5 to 12 mm
- Shank according to DIN 6535 HA

The application

- For the ISO material groups P, K, N (M, S)
- Can be used with emulsion and oil
- For use in general mechanical engineering, mould and die making, and the automotive and energy industries

70 x D_c as special tool

Standard range

Benefits for you

- Up to 10-times higher productivity than gun drills
- Drilling without pecking
- Maximum process reliability at deep drilling depths
- Suitable for use with low coolant pressures from 20 bar
- Can be used with various material groups
- such as ISO P, K, N (M, S)
- Can be used for cross holes and inclined exits

Alpha®4 XD20 - 20 x D_c

Alpha®4 XD16 – 16 x D_c

Watch product video: Scan this QR code or go directly to http://goo.gl/yQB64

Watch product animation: Scan this QR code or go directly to http://goo.gl/ZBIMm

Walter Select for carbide and HSS drilling tools

Step by step to the right tool

STEP 1

Define the **material** to be machined, see GK page **H 8** onwards.

Note the machining group that corresponds to your material e.g.: K5.

Identi- fication letters	Machining group	Groups of the materials to be machined	
Р	P1-P15	Steel	All types of steel and cast steel, with the exception of steel with an austenitic structure
М	M1-M3	Stainless steel	Stainless austenitic steel, austenitic-ferritic steel and cast steel
K	K1-K7	Cast iron	Grey cast iron, cast iron with spheroidal graphite, malleable cast iron, cast iron with vermicular graphite
N	N1-N10	NF metals	Aluminium and other non- ferrous metals, non-ferrous materials
s	S1-S10	Super alloys and titanium alloys	Heat-resistant special alloys based on iron, nickel and cobalt, titanium and titanium alloys
Н	H1-H4	Hard materials	Hardened steel, hardened cast iron materials, chilled cast iron
0	01-06	Other	Plastics, glass- and carbon- fibre reinforced plastics, graphite

STEP 2

Select the machining conditions

Machine stability, clamping system and workpiece					
very good	very good good moderate				
©	49				

STEP 3

Select the cutting material (HSS, carbide) and the type of cooling:

Tools made from **carbide with internal cooling**: from page GK **B 16**Tools made from **carbide without internal cooling**: from page GK **B 22**Tools made from **HSS**: from page GK **B 26**

STEP 4

Choose your tool:

- In accordance with the drilling depth or DIN (e.g. 3 x D_c or DIN 338)
- In accordance with machining conditions
 (see step 2:
 (see \$\mathbb{\alpha}\)
- For the relevant machining group

(see step 1: P1-15; M1-M3; ... 01-06)

= cutting data for wet machin

				1	Drilling dept	4	3 :	r D _c	Т
_	Machine sta	bility.	Main	- 11	Machining co	nditions	⊗	69	Г
۱	Machine sta clamping system a	nd workpiece	application	n	Designation		A32890PL	ASSESTFL ASSESTFL	Γ
U				- 11	Туре		X-treene Plus	Alpha* 4	T
31	" A W	€ ≈	Addition	al II	Dimensions		DIN 6537 K	DIN 6537 K	Τ
П.		moderate	applicati	on I	Dia range (m	m)	3,00 - 20,00	3,00 - 20,00	Т
7	very good good		applicati		Cutting tool r	naterial	KSEF	KSEF	Т
•	Very go-				Coating		DPL	TFL	т
s	ທ (Page		870	B 65/B 102	т
Material group	and ideni	nain material groups uffication letters lece material		Brinel handness HB	Nersilo strength Re. NAmes	Machining group			
		annealed (tempered)		210	700	P1, P2, P3, P4, P7	••	••	L
	Non-alloyed and low	machining steel		220	750	P6	**	**	₩
	alloy steel	tempered tempered		380	1010	P5, P6	**	**	₩
		tempered		430	1480	P10	••	•••	1
Р		annealed		200	670	P11	**	**	1
	High-alloyed steel and	hardened and tempered		300	1010	P12	**		Τ١.
	high-alloyed tool steel	hardened and tempered		600	1380	P13	••	••	1
		ferritic/martensitic, annealer	d	200	670	P16	••	••	1
	Stainless steel	martensitic, tempered		330	1110	P15		••	Т

STEP 5

Choose your cutting data from the table. See GK page B 352 or HB page 36 onwards:

- Cutting speed:
 v_c; VCRR
 (v_c rate chart for micro)
- Feed:VRR(feed rate chart)

	E : Emulsion D - OI			-	Type		-	X.t neer	on Dive	_	-	41-1	m* 4	\neg	_
	M = MOL			-	Dimension		_	DIN 6		-	-		537 K	-	$\overline{}$
	L : dry				s range (s		-	100			-		20.00	-	_
	V _p : cutting speed				no tool mi		-		DF.	_	-		OF.	-	_
	VCRR = v, rating chart from page 5 35	2		_	Coating		-	- 0	25	_	-	-		-	$\overline{}$
	VRR : feed rating chart from page 5.3			-	Page		_		70	-	-	5.55	95 1012	\neg	$\overline{}$
drad		ocuping of main material groups and identification letters		Trees HB	engh R.s.	, draß									
We per or		Workpiece material		Brinel hardness HB	Versio 2.9	Machining group ¹	Ļ	= ₹	_	夷		- A	Ť	犬	Τ
		0.02%	annealed	125	628	P2	200		EO	ML			EO	ML	
		C > 0.25 < 0.55 %	annealed	292	522	PZ.	180				105				_
		C > 0.25 < 0.55 %	tempered	210	705	P3	170	12	EO	ML	100	12	EO	ML	
	Non-alloyed steel	C > 0.55 %	annealed	290	539	Pú	180				105				
		C > 0.55 %	tempered	300	1013	P5	140	12	EO	ML	75	3	EO	ML	
		machining steel (short-chipping)	annealed	220	745	PB	200	16		ML	120	22	EO	ML	
		annealed		175	591	P7	180	12	EO		105	12	EO		
2	Low alloy steel	tempered		300	1013	PB	140	12	EO	ML	75	3	EO	ML	
	LOW BIOUS STANK	tempered		350	1282	120	100		30		50	5	30		
		tempered		633	1677	P10	80		30		42		OE		
		annealed		200	675	P11	85		EO		6.7	3	EO		
	high-alloyed steel and high-alloyed tool steel	h-alloyed steel and hardened and tempered									60	7	EO		
	mgr-anger our side!	hardened and tempered							0.0		42	4	0E		- 7
	Stainless steel	ferritic/marternitic, annealed		200	675	P14	85	9	EO		67	2	EO		7
	Stamess state	martensitic, tempered		330	1116	P15	50	2	EO		62	7	EO		╗
		austenitic, quench hardened		200	675	MI	50	5	EO		42	5	EO	\Box	\neg
И	Stainless steel	austenitic, precipitation hardened (PH)		300	1013	M2	53	5	EO		55	5	EO		
		austenitic/femilic, duplex		230	778	M3	40	5	EO		34	5	ΕO		
	Malleable cast iron				525	107	130		_			_	50	MI	

Go to the row of your machining group (e.g. K5) and the column of your selected drilling tool. You will find the cutting speed v_{C} or the VCRR and VRR there.

The v_C rate chart (VCRR) and the feed rate chart (VRR) can be found in the GK from page B 382 or in the EK from page B-122 onwards.

Solid carbide cutting data with internal cooling (part 1/8)

	v-						
	= Cutting data for wet macl	nining			ling de		
	¥			De	signati	on	
	= Dry machining is possible,				Type		
	cutting data must be sele	ected from Walter GPS			mensio		
	E = Emulsion	v _c = Cutting speed			ange (n		
	0 = 0il	VCRR = v, rate chart HB page 5			ng mat		
	M = MQL	VRR = feed rate chart HB page !		(Coating		
Д	L = Dry	VKK = reed rate chart no page :) J		Page		
Material group	St	· · · · · · · · · · · · · · · · · · ·			£		ĺ
ъ		of main material groups		ω	Ē		ĺ
a	an	id code letters		표	n² tr	Б	ĺ
ē				_ si	l e s	: <u>Ē</u>	Í
at at	Wor	kpiece material		흔등	<u>1</u> 2 ≥	유망	ĺ
_	1.0.	npiece materia.		Brinell hardness HB	Tensile strength R N/mm²	Machining group ¹	ĺ
		C ≤ 0.25%	Annealed	125	428	P1	
		C > 0.25 < 0.55%	Annealed	190	639	P2	
		C > 0.25 ≤ 0.55%	Tempered	210	708	P3	
	Non-alloyed steel	C > 0.55%	Annealed	190	639	P4	
		C > 0.55%	Tempered	300	1013	P5	
		Free cutting steel (short-chipping		220	745	P6	
		Annealed	,	175	591	P7	
Р		Tempered		300	1013	P8	
•	Low-alloyed steel	Tempered		380	1282	P9	
		Tempered		430	1477	P10	
	10.1 0 1 1 1	Annealed		200	675	P11	
	High-alloyed steel and	Hardened and tempered		300	1013	P12	
	high-alloyed tool steel	Hardened and tempered		400	1361	P13	
		Ferritic/martensitic, annealed		200	675	P14	
	Stainless steel	Martensitic, tempered		330	1114	P15	
		Austenitic, quench hardened		200	675	M1	
М	Stainless steel	Austenitic, precipitation harden	ed (PH)	300	1013	M2	
		Austenitic/ferritic, duplex	,	230	778	M3	
	14 11 11 11	Ferritic		200	675	K1	
	Malleable cast iron	Pearlitic		260	867	K2	
	Constructions	Low tensile strength		180	602	K3	
K	Grey cast iron	High tensile strength/austenitic		245	825	K4	
	Cost ivan with anharaidal aranhita	Ferritic		155	518	K5	
	Cast iron with spheroidal graphite	Pearlitic		265	885	K6	
	GGV (CGI)			200	675	K7	
	Aluminium wrought alloys	Cannot be hardened		30	-	N1	
	Aldifilliant wroagitt alloys	Hardenable, hardened		100	343	N2	
		≤ 12% Si, cannot be hardened		75	260	N3	
	Cast aluminium alloys	≤ 12% Si, hardenable, hardened		90	314	N4	
N		> 12% Si, cannot be hardened		130	447	N5	
	Magnesium alloys			70	250	N6	
		Non-alloyed, electrolytic copper		100	343	N7	
	Copper and copper alloys	Brass, bronze, red brass		90	314	N8	
	(bronze/brass)	Cu-alloys, short-chipping		110	382	N9	
		High-strength, Ampco		300	1013	N10	
		Fe-based	Annealed	200	675	S1	
	Heat maintant allens		Hardened	280 250	943 839	S2 S3	
	Heat-resistant alloys	Ni or Co base	Annealed Hardened	350	1177	S4	
		INI OI CO Dase		320	1076	S5	
S		Pure titanium	Cast	200	675	S6	
_	Titanium alloys	α and β alloys, hardened	-	375	1262	S7	
	Titaliiulii alloys	β alloys		410	1396	S8	
	Tungsten alloys	palloys		300	1013	S9	
	Molybdenum alloys			300	1013	S10	
	I Work Duction alloys	Hardened and tempered		50 HRC	-	H1	
	Hardened steel	Hardened and tempered		55 HRC	-	H2	
Н	The second second	Hardened and tempered		60 HRC	-	H3	
	Hardened cast iron	Hardened and tempered		55 HRC	-	H4	
	Thermoplastics	Without abrasive fillers		33 111(C		01	
	Thermosetting plastics	Without abrasive fillers				02	
_	Plastic, glass-fibre reinforced	GFRP				03	
0	Plastic, carbon-fibre reinforced	CFRP				04	
	Plastic, aramid-fibre reinforced	AFRP				05	
	Graphite (technical)			80 Shore		06	
						-	

The specified cutting data are average recommended values. For special applications, adjustment is recommended.

									рестат с	іррііса	LIUIIS, a	ujusuii	ent is i	ecomin	enueu.
K32	99XPL	· K3899	XPL		A328	9DPL	3 x	D _c	A329	3TTP		A32	99XPL	A3899	IXPL
χ.	treme	Step	90		X∙trem	ne Plus			X∙trem	e Inox		7152	X∙tr	eme	
V	Valter s		ď			537 K			DIN 6					537 K	
	3.30 – K3	14.00 OF			3.00 – K3	20.00 0F			3.00 – K3	20.00 0F			3.00 – K3	20.00 0F	
	XF	PL			DI	PL			TT	P			XI	PL	
E	K B-75	5 / B-7	7		GK I	3 70			EK B	-30		E	K B-33	/ B-5	4
		8							1						
	=₹	1	X		====	,	₹		=======================================		₹		⇉		□ X
ν _c 140	VRR 12	ΕO	ML	ν _c 200	VRR 16	ΕO	ML	v _c	VRR 10	E 0	ML	ν _c	VRR 12	ΕO	ML
 140	12	EO	ML	180	12	EO	ML	120	10	EO	ML	140	12	EO	ML
130	12	ΕO	ML	170	12	ΕO	ML	110	10	ΕO	ML	130	12	ΕO	ML
140	12	E O	ML	180	12	E O	ML	120	10	E 0	ML	140	12	E 0	ML
105 150	10 12	E O	M L	140 200	12 16	E O	M L	145	12	ΕO	МL	105 150	10 12	E O	M L
140	12	EO	ML	180	12	EO	ML	120	10	EO	ML	140	12	EO	ML
105	10	EO	ML	140	12	EO	ML	120	10			105	10	EO	ML
80	7	0 E		100	8	0 E						80	7	0 E	
63	5	0 E		80	6	0 E						63	5	0 E	
71	9	E O		85	9	E O						71	9	E O	
95 63	9 5	E 0		120 80	10 6	E 0						95 63	9 5	E 0	
71	9	EO		85	9	EO		95	9	ΕO		71	9	EO	
40	8	EO		50	9	ΕO		55	8	E 0		40	8	ΕO	
40	6	E 0		50	6	E 0		53	6	E 0		40	6	E 0	
45 6 E 0 34 5 E 0				63	6	E O		68	6	E 0		45	6	E 0	
34 5 EO			N4 I	40 130	6 20	E O	N4 I	53	6	E 0		34 100	5	E 0	MI
63	100 16 EO M			120	16	EO	M L					63	16 10	E O	M L
125	16	EO	ML	160	20	EO	ML					125	16	EO	ML
105	16	ΕO	ML	130	20	ΕO	ML					105	16	ΕO	ML
130	16	E 0	ML	150	16	E	ML					130	16	E 0	ML
95	16	E 0	ML	120	16	E 0	ML					95	16	E 0	ML
110 400	16 16	E O	M L	140 450	16 16	O E	M L	450	16	ΕO	М	110 400	16 16	E O	M L
400	16	EO	M	450	16	EO	M	450	16	E O	M	400	16	EO	M
250	16	ΕO	M	320	16	ΕO	М	250	16	ΕO	M	250	16	ΕO	M
240	16	E 0	М	300	16	E 0	М	240	16	E O	М	240	16	E 0	М
190	16	E O	М	250	16	E O	М	190	16	E 0	М	190	16	E 0	M
240	16	E O	ML	300	16 12	E O	ML	240	16 9	F 0	ML	240 190	16 8	E O	ML
190 160	8 10	E O	М	280 240	16	E O	М	180	12	E O	М	160	10	E O	М
190	16	EO	М	260	20	EO	М	190	16	EO	М	190	16	EO	М
60	5	E 0		120	10	E 0		60	7	E 0		60	5	E 0	
50	6	E O		50	6	E 0		50	6	E 0		50	6	E 0	
30	5	0 E		38	5	0 E		38	5	0 E		30	5	0 E	
34 19	5	E 0		42 26	5	E 0		42 26	5	E 0		34 19	5 4	E 0	
26	4	0 E		32	4	0 E		32	4	0 E		26	4	0 E	
56	6	0 E		71	6	0 E		71	6	0 E		56	6	0 E	
50	5	0 E		63	5	0 E		63	5	0 E		50	5	0 E	
12,5	4	0 E		20	4	0 E		20	4	0 E		12,5	4	0 E	
60	5	E O		120	10	E O		120	9	E O		60	5	E O	
60 48	5 4	0 E		120 53	10	0 E		120	9	E 0		60 48	5 4	0 E	
32	3	0 E		45	4	0 E						32	3	0 E	
52				-,5											
32	3	0 E		45	4	0 E						32	3	0 E	
100	16	E O		130	16	E O		130	16	E 0		100	16	E 0	

 $HB = this\ handbook \cdot GK = Walter\ General\ Catalogue\ 2012 \cdot EK = Walter\ Supplementary\ Catalogue\ 2013/2014$

Solid carbide cutting data with internal cooling (part 2/8)

	= Cutting data for wet macl	hining			ing de		
	- I	3		De	signati	on	
	= Dry machining is possible				Type		
	cutting data must be sele	ected from Walter GPS			nensio		
	E = Emulsion	v _r = Cutting speed			inge (n		
	0 = 0il	VCRR = v. rate chart HB page 54			ng mat		
	M = MQL	VRR = feed rate chart HB page 5		(Coating		
₽	L = Dry	That = recarded entare rib page 5			Page		
Material group	Structure	of main material groups			Tensile strength R _m N/mm ²		
Б		nd code letters			E		
<u>a</u> .	aii	iu code letters		7	15 te	DG .	
Ē				1 = S	nsile str N/mm²	: <u>=</u>	
٩a	Wor	rkpiece material		Brinell hardness HB	<u>≅</u> ≥	Machining group ¹	
_		•					
		C ≤ 0.25%	Annealed	125	428	P1	
		C > 0.25 ≤ 0.55%	Annealed	190	639	P2	
	Non-alloyed steel	C > 0.25 ≤ 0.55%	Tempered	210	708	P3	
	Non-alloyed Steel	C > 0.55%	Annealed	190	639	P4	
		C > 0.55%	Tempered	300	1013	P5	
		Free cutting steel (short-chipping)	Annealed	220	745	P6	
_		Annealed		175	591	P7	
Р	Low-alloyed steel	Tempered		300	1013	P8	
	Low dilayed steel	Tempered		380	1282	P9	
		Tempered		430	1477	P10	
	High-alloyed steel and	Annealed		200	675	P11	
	high-alloyed tool steel	Hardened and tempered		300	1013	P12	
	- Ingri and/ea coor seec.	Hardened and tempered		400	1361	P13	
	Stainless steel	Ferritic/martensitic, annealed		200	675	P14	
		Martensitic, tempered		330	1114	P15	
М	Stainless steel	Austenitic, quench hardened	-L (DIII)	200	675 1013	M1	
M	Stainless steel	Austenitic, precipitation hardene Austenitic/ferritic, duplex	a (PH)	300 230	778	M2 M3	
		Ferritic		200	675	K1	
	Malleable cast iron	Pearlitic		260	867	K2	
		Low tensile strength		180	602	K3	
K	Grey cast iron	High tensile strength/austenitic		245	825	K4	
r		Ferritic		155	518	K5	
	Cast iron with spheroidal graphite	Pearlitic		265	885	K6	
	GGV (CGI)	T carried		200	675	K7	
		Cannot be hardened		30	-	N1	
	Aluminium wrought alloys	Hardenable, hardened		100	343	N2	
		≤ 12% Si, cannot be hardened		75	260	N3	
	Cast aluminium alloys	≤ 12% Si, hardenable, hardened		90	314	N4	
N		> 12% Si, cannot be hardened		130	447	N5	
14	Magnesium alloys			70	250	N6	
		Non-alloyed, electrolytic copper		100	343	N7	
	Copper and copper alloys	Brass, bronze, red brass		90	314	N8	
	(bronze/brass)	Cu-alloys, short-chipping		110	382	N9	
		High-strength, Ampco	A	300	1013	N10	
		Fe-based	Annealed	200	675	S1	
		1000000	Hardened	280	943	S2	
	Heat-resistant alloys	Ni ox Co book	Annealed	250	839	S3	
		Ni or Co base	Hardened Cast	350 320	1177 1076	S4 S5	
S		Pure titanium	CdSL	200	675	S6	
_	Titanium alloys	α and β alloys, hardened		375	1262	57	
	Titaliiuili alioys	β alloys		410	1396	S8	
	Tungsten alloys	palloys		300	1013	59	
	Molybdenum alloys			300	1013	S10	
	mory action alloys	Hardened and tempered		50 HRC	-	H1	
	Hardened steel	Hardened and tempered		55 HRC	-	H2	
Н		Hardened and tempered		60 HRC	-	H3	
	Hardened cast iron	Hardened and tempered		55 HRC	-	H4	
	Thermoplastics	Without abrasive fillers				01	
	Thermosetting plastics	Without abrasive fillers				02	
O	Plastic, glass-fibre reinforced	GFRP				03	
U	Plastic, carbon-fibre reinforced	CFRP				04	
	Plastic, aramid-fibre reinforced	AFRP				05	
	Graphite (technical)			80 Shore		06	
			Dogg	informs	tion ro	fore to	

The specified cutting data are average recommended values. For special applications, adjustment is recommended.

									pecial a	applica	tions, a	djustm	ent is r	ecomn	nended.
	A338	INAP			A338	9DPI	5 x	D _c	Δ330	3TTP			Δ339	2XPL	
		me M			X-trem				X-trem					me CI	
٧	Valter s	tandar	ď		DIN 6	537 L			DIN 6	537 L			DIN 6	537 L	
	2.00 -	- 2.95			3.00 -	20.00			3.00 -	20.00			3.00 -	20.00	
		0F			K3				K3					0F	
_	EK E				DF GK E				L T	1P 3-42				PL B 81	
	ENE)-41 			UN E	00			ENE	9-42		_	UN	D 01	
									Ü						
	1		X		=₹		X		二		X		=5		X
VCRR	VRR			V _c	VRR			V _c	VRR			V _c	VRR		
C100	12	E		190	12	E 0	ML	150	10	E O	ML				
C80 C80	12 12	E		170 160	12 12	E O	M L	110 100	10 10	E O	M L				
C100	12	E		170	12	EO	ML	110	10	EO	ML	_			
C71	12	Ē		130	12	ΕO	ML	110	10		.W. L				
C100	12	Ē		190	16	ΕO	ML	135	12	ΕO	МL				
C80	12	Е		170	12	E 0	МL	110	10	ΕO	МL				
C71	12	Е		130	12	E 0	МL								
C56	9	E		95	8	0 E									
C40	6	E		71	6	0 E									
C63	10 12	E		85 120	9	E O									
C63 C40	6	E		71	6	0 E									
C63	10	E		85	9	EO		90	9	ΕO					
C50	8	Ē		48	9	ΕO		50	8	ΕO					
C40	8	Е		48	6	ΕO		50	6	ΕO					
C63	10	Е		60	6	E O		65	6	E O					
C32	5	E		38	6	E 0		50	6	E O					
C160	21	E		125	16	E O	ML					130	20	E O	МL
C160	21	E		120	16	E 0	ML					120	16	E 0	ML
C160 C160	21	E		150 125	16 16	E O	M L					160 130	20	E O	M L
C160	21	Ē		140	16	E	ML					160	20	EO	ML
C125	16	Ē		120	16	ΕO	ML					120	16	EO	ML
C140	19	Ē		130	16	0 E	ML					140	20	ΕO	ML
C160	26	Е		450	16	E O	М	450	16	E O	М				
C160	26	Е		450	16	E O	М	450	16	E O	M				
C160	24	E		320	16	E 0	М	250	16	E O	M				
C160	24	E		300	16	E 0	М	240	16	E O	M				
C125	20	Е		250 300	16	E O	M	190	16	E O	M				
C100	6	Е		240	16 10	ΕO	M L M	240 210	16 9	ΕO	M L M				
C80	12	Ē		200	12	EO	IVI	180	12	EO	IVI				
C100	20	Ē		260	20	EO	М	190	16	EO	М				
C56	8	Е		120	10	E 0		60	7	E O					
C50	8	Е		48	6	E 0		48	6	E O					
C26	6	E		36	5	0 E		36	5	0 E					
C32	5	E		40	5	EO		40	5	E O					
C16	6	E		30	4	0 E		24 30	4	0 E					
C16 C50	6	E		60	6	0 E		60	6	0 E					
C32	5	E		53	5	0 E		53	5	0 E					
C16	5	Ē		18	4	0 E		18	4	0 E					
C56	8	Ē		120	10	ΕO		120	9	ΕO					
C56	8	Е		120	10	E 0		120	9	ΕO					
C32	3	E		53	4	0 E									
C32	3	Е		45	4	0 E									
C22	2	-		/-	,	0 -									
C32	3 22	E		45 130	4	0 E		130	16	ΕO					
CIUU	22			130	16	EU		130	10	EU					

Solid carbide cutting data with internal cooling (part 3/8)

_							
	= Cutting data for wet mac	hining			ing de		
		3		De	signati	on	
	= Dry machining is possible				Type		
	cutting data must be sele	ected from Walter GPS			nensio		
	E = Emulsion	v _r = Cutting speed			inge (n		
	0 = 0il	VCRR = v. rate chart HB page 54			ng mat		
	M = MQL	VRR = feed rate chart HB page 5		(Coating		
2	L = Dry	That = recarded entare rib page 5			Page		
Material group	Structure	of main material groups			Tensile strength R _m N/mm ²		
5	Structure	nd code letters			E		
	ai ai	iu code letters		7	15 te	DG .	
9				1 = S	nsile str N/mm²	: <u>=</u>	
<u>A</u>	Wor	rkpiece material		Brinell hardness HB	<u>≅</u> ≥	Machining group ¹	
_	·	•					
		C ≤ 0.25%	Annealed	125	428	P1	
		C > 0.25 ≤ 0.55%	Annealed	190	639	P2	
	Non-alloyed steel	C > 0.25 ≤ 0.55%	Tempered	210	708	P3	
	Non-alloyed Steel	C > 0.55%	Annealed	190	639	P4	
		C > 0.55%	Tempered	300	1013	P5	
		Free cutting steel (short-chipping)	Annealed	220	745	P6	
_		Annealed		175	591	P7	
P	Low-alloyed steel	Tempered		300	1013	P8	
	Low diloyed Steel	Tempered		380	1282	P9	
		Tempered		430	1477	P10	
	High-alloyed steel and	Annealed		200	675	P11	
	high-alloyed tool steel	Hardened and tempered		300	1013	P12	
	riigir alioyda coor seedi	Hardened and tempered		400	1361	P13	
	Stainless steel	Ferritic/martensitic, annealed		200	675	P14	
		Martensitic, tempered		330	1114	P15	
N	Stainless steel	Austenitic, quench hardened	-L (DIII)	200	675 1013	M1	
IV	Stainless steel	Austenitic, precipitation hardene Austenitic/ferritic, duplex	a (PH)	300 230	778	M2 M3	
		Ferritic		200	675	K1	
	Malleable cast iron	Pearlitic		260	867	K2	
		Low tensile strength		180	602	K3	
K	Grey cast iron	High tensile strength/austenitic		245	825	K4	
r	*1	Ferritic		155	518	K5	
	Cast iron with spheroidal graphite	Pearlitic		265	885	K6	
	GGV (CGI)	T carried		200	675	K7	
		Cannot be hardened		30	-	N1	
	Aluminium wrought alloys	Hardenable, hardened		100	343	N2	
		≤ 12% Si, cannot be hardened		75	260	N3	
	Cast aluminium alloys	≤ 12% Si, hardenable, hardened		90	314	N4	
N		> 12% Si, cannot be hardened		130	447	N5	
	Magnesium alloys			70	250	N6	
		Non-alloyed, electrolytic copper		100	343	N7	
	Copper and copper alloys	Brass, bronze, red brass		90	314	N8	
	(bronze/brass)	Cu-alloys, short-chipping		110	382	N9	
		High-strength, Ampco		300	1013	N10	
		Fe-based	Annealed	200	675	S1	
	Heat maintant allows		Hardened	280	943	S2	
	Heat-resistant alloys	NE C- h	Annealed	250	839	S3	
		Ni or Co base	Hardened Cast	350 320	1177 1076	S4 S5	
S		Pure titanium	CdSL	200	675	S6	
	Titanium alloys	α and β alloys, hardened		375	1262	57	
	Titaliiuiii alioys	β alloys		410	1396	S8	
	Tungsten alloys	palloys		300	1013	59	
	Molybdenum alloys			300	1013	S10	
	, Lacriain and jo	Hardened and tempered		50 HRC	-	H1	
	Hardened steel	Hardened and tempered		55 HRC	-	H2	
Н		Hardened and tempered		60 HRC	-	H3	
	Hardened cast iron	Hardened and tempered		55 HRC	-	H4	
	Thermoplastics	Without abrasive fillers				01	
	Thermosetting plastics	Without abrasive fillers				02	
0	Plastic, glass-fibre reinforced	GFRP				03	
U	Plastic, carbon-fibre reinforced	CFRP				04	
	Plastic, aramid-fibre reinforced	AFRP		00		05	
	Graphite (technical)			80 Shore		06	
			Page	informa	ation ro	fors to	

The specified cutting data are average recommended values. For special applications, adjustment is recommended.

								For s	pecial a	арриса	tions, a	ajustm	ent is r	ecomm	iended.
		D _c					8 x	D _c					12 >		
A339		A3999	3XPL			9AMP			A648			<u> </u>	A6589		
	DIN 6	537 I			X∙trem Valter s			V	X-trer Valter s		Н		<mark>(∙trem</mark> e Valter s		
		25.00		· •	2.00 -	- 2.95	u	_ *	3.00 -		u	<u> </u>	2.00 -		u
		OF			K3	0F			K3	0F			K3	0F	
		PL			ΑN				DF				AN		
G	K B 89	/ B 11	.2		EK E	3-67			GK B	123			EK E	3-68	
	1	1							V				l	1	
	ONE OF THE PERSON NAMED IN	U.	_989_		- Ones	l .			- Oggo	Ø.	_000		- 1	Š.	_979
V _c	⊐Ë	1	X	VCRR	⊐⊏ VRR	1	X	V _c	⊐ Ä VRR		X	VCRR	⊐=¯¯¯¯¯¯¯¯		X
120	10	ΕO	МL	C100	12	Е		180	12	ΕO	МL	C80	12	Е	
100	10	ΕO	ML	C80	12	Ē		160	12	ΕO	ML	C80	12	Ē	
95	10	E 0	ML	C80	12	Е		150	12	E 0	МL	C80	12	Е	
100	10	E O	ML	C80	12	Е		160	12	E 0	МL	C80	12	Е	
71	8	E O	ML	C71	12	E		125	10	E 0	ML	C59	10	E	
120 100	12 10	E O	M L	C100 C80	12 12	E		180 160	12 12	E O	M L	C80 C80	12 12	E	
71	8	EO	ML	C71	12	E		125	10	E O	ML	C59	10	Ė	
48	6	0 E	IVI L	C53	8	E		85	7	0 E	IVI L	C45	7	늗	
38	4	0 E		C40	6	Ē		63	5	0 E		C40	6	Ē	
63	8	ΕO		C63	10	E		80	8	ΕO		C63	10	E	
56	7	E O		C63	10	E		110	9	E 0		C50	8	Е	
38	4	0 E		C40	6	E		63	5	0 E		C40	6	E	
63	8	E 0		C63	10	E		80	8	E 0		C63	10	<u>E</u>	
42	7	E O		C50 C40	8	E		45 45	8	E O		C50 C40	8	E	
	38 5 E O 42 6 E O			C50	8	E		56	6 6	E O		C50	7	Ė	
31	5	EO		C32	5	Ē		36	6	EO		C25	5	È	
95	16	EO	МL	C125	17	Ē		120	12	E O	МL	C100	13	Ē	
71	12	E 0	ML	C125	17	Е		110	12	E 0	МL	C100	13	Е	
120	16	E O	ML	C125	17	E		140	12	E 0	МL	C100	13	E	
95	16	E O	ML	C125	17	E		120	12	E 0	ML	C100	13	E	
95 71	16 12	E O	M L	C125 C100	17 14	E		140 110	12 12	E O	M L	C100 C80	13 11	E	
85	16	EO	ML	C110	16	E		125	12	EO	ML	C100	12	늗	
400	16	EO	M	C160	26	Ē		450	16	ΕO	M	C160	25	Ē	
400	16	ΕO	М	C160	26	E		450	16	ΕO	М	C160	25	E	
250	16	E 0	М	C160	24	Е		320	16	E 0	М	C160	23	Е	
240	16	E O	М	C160	24	E		300	16	E 0	М	C160	23	E	
190	16	E O	M	C125	20	E		250 300	16	E 0	M L	C125	19	E	
240 180	16 8	ΕO	M L	C80	6	E		200	16 9	ΕO	ML	C80	6	Е	
150	10	EO	ivi	C80	12	Ė		170	12	EO	IVI	C80	11	Ė	
190	16	EO	М	C100	20	Ē		260	20	ΕO	М	C80	19	Ē	
56	7	ΕO		C52	8	E		110	9	E 0		C50	7	Е	
42	5	E O		C40	8	E		45	6	E 0		C40	7	E	
24	4	0 E		C24	6	E		32	5	0 E		C21	6	E	
30 15	3	0 E		C32 C16	5 6	E		38 21	5 4	E 0		C25 C16	5 5	E	
18	3	0 E		C16	6	E		26	4	0 E		C16	5	E	
48	6	0 E		C50	6	Ē		50	5	0 E		C40	6	È	
40	5	0 E		C32	5	Е		45	5	0 E		C32	5	Е	
11	3	0 E		C16	5	E		16	4	0 E		C16	5	Е	
56	7	E O		C52	8	E		110	9	E 0		C56	8	E	
56 30	7	E O		C52	8	E		110	9	E O		C56	8	E	
30 26	3	0 E		C32	3	E		45 38	3	0 E		C32	3	E	
20	J	0.2		CJE		-		30	J	UE		CJE			
26	3	0 E		C32	3	Е		38	3	0 E		C32	3	Е	
				C100	22	Ē		130	16	ΕO		C100	20	Ē	

Solid carbide cutting data with internal cooling (part 4/8)

_		= Cutting data for wet mach	nining			ing de		
		= Dry machining is possible,			De	signati	on	
		cutting data must be sele			Dir	Type nensio	ne	
-		E = Emulsion				inge (m		
		0 = 0il	v _c = Cutting speed	.,		ng mat		
		$\mathbf{M} = MQL$	VCRR = v _c rating chart HB page 5	54		Coating		
	Д	L = Dry	VRR = feed rate chart HB page 5	5		Page		
	Material group	Structure	of main material groups			£		
	<u> </u>		d code letters		甲	en ĵ		
	ī.				SS	str III ²	ing	
	ate				le el	nsile str N/mm²	투급	
	Σ	Wor	kpiece material		Brinell hardness HB	Tensile strength R _m N/mm ²	Machining group ¹	
ı			C ≤ 0.25%	Annealed	125	428	P1	
			C > 0.25 ≤ 0.55%	Annealed	190	639	P2	
		Non-alloyed steel	C > 0.25 ≤ 0.55%	Tempered	210	708	P3	
		Non-alloyed Steel	C > 0.55%	Annealed	190	639	P4	
			C > 0.55%	Tempered	300	1013	P5	
			Free cutting steel (short-chipping	Annealed	220	745 591	P6 P7	
	Р		Annealed Tempered		175 300	1013	P8	
		Low-alloyed steel	Tempered		380	1282	P9	
			Tempered		430	1477	P10	
		High-alloyed steel and	Annealed		200	675	P11	
		high-alloyed tool steel	Hardened and tempered		300	1013	P12	
		riigii-aiioyea tooi steel	Hardened and tempered		400	1361	P13	
		Stainless steel	Ferritic/martensitic, annealed Martensitic, tempered		200 330	675 1114	P14 P15	
٠			Austenitic, quench hardened		200	675	M1	
	м	Stainless steel	Austenitic, querici hardened	d (PH)	300	1013	M2	
			Austenitic/ferritic, duplex	- (/	230	778	M3	
Т		Malleable cast iron	Ferritic		200	675	K1	
		Walleable Cast II 011	Pearlitic		260	867	K2	
	ĸ	Grey cast iron	Low tensile strength		180	602	K3	
	r	· ·	High tensile strength/austenitic Ferritic		245 155	825 518	K4 K5	
		Cast iron with spheroidal graphite	Pearlitic		265	885	K6	
		GGV (CGI)			200	675	K7	
		Aluminium wrought alloys	Cannot be hardened		30	-	N1	
		Adminian wodgite alloys	Hardenable, hardened		100	343	N2	
		Cast aluminium alloys	≤ 12% Si, cannot be hardened ≤ 12% Si, hardenable, hardened		75 90	260	N3 N4	
		Cast aluminum alloys	> 12% Si, cannot be hardened		130	314 447	N5	
	N	Magnesium alloys	> 12 % Si, carinot be nardened		70	250	N6	
		,	Non-alloyed, electrolytic copper		100	343	N7	
		Copper and copper alloys	Brass, bronze, red brass		90	314	N8	
		(bronze/brass)	Cu-alloys, short-chipping		110	382	N9	
-			High-strength, Ampco	Annealed	300 200	1013 675	N10 S1	
			Fe-based	Hardened	280	943	S2	
		Heat-resistant alloys		Annealed	250	839	53	
		,	Ni or Co base	Hardened	350	1177	54	
	S			Cast	320	1076	S5	
	,		Pure titanium		200	675	S6	
		Titanium alloys	α and β alloys, hardened β alloys		375 410	1262 1396	S7 S8	
		Tungsten alloys	p alloys		300	1013	S9	
		Molybdenum alloys			300	1013	S10	
ľ			Hardened and tempered		50 HRC	-	H1	
	н	Hardened steel	Hardened and tempered		55 HRC	-	H2	
	••		Hardened and tempered		60 HRC	-	H3	
ŀ		Hardened cast iron	Hardened and tempered		55 HRC	-	H4	
		Thermoplastics Thermosetting plastics	Without abrasive fillers Without abrasive fillers				01	
	•	Plastic, glass-fibre reinforced	GFRP GFRP				03	
	0	Plastic, carbon-fibre reinforced	CFRP				04	
		Plastic, aramid-fibre reinforced	AFRP				05	
		Graphite (technical)			80 Shore		06	

The specified cutting data are average recommended values. For special applications, adjustment is recommended.

					tions, a	djustm			nended.						
	12 >				1000	24145	16 >	CD _C	1660	ETED			20 :		
		9DPP 1 e D12		,	A6689 (•trem		6		A668 Alpha®		5	,	A6789		n
		tandar			Valter s			Ý	Valter s	tandar	d		Valter s		
		20.00	<u> </u>	<u> </u>	2.00 -	- 2.90	<u> </u>		3.00 -	16.00	<u> </u>		2.00 -	- 2.90	
	K3				K3				K3				K3		
	DI					/P			TF				AN		
	GK B	12/			EK E	8-69 V			GK B	130			GK B	132	
	- 1					ð.			1	N.				1	
		A			2	ľ.			0	Ø					
	=	_	_000		<u> </u>	_	_000		<u> </u>		_752		=₹	_	_989
	4		₹		=		₹		=		X		=		=X
V _c	VRR			VCRR	VRR			V _c	VRR			VCRR	VRR		
170	12	E 0	ML	C80	10	E		110	10	E 0	ML	C80	10	E	
150 140	12	E O	M L	C71 C63	10 10	E		95 90	10 10	E O	M L	C63	10 10	E	
150	12	EO	ML	C71	10	Ē		95	10	EO	ML	C63	10	Ē	
120	10	ΕO	ML	C45	6	Ē		67	9	ΕO	ML	C50	8	Е	
170	12	E 0	ML	C80	10	Е		110	12	E 0	МL	C80	10	Е	
150	12	E O	ML	C71	10	E		95	10	E 0	ML	C63	10	E	
120 80	10 7	E 0	ML	C45	6 10	E		67 42	9 7	E 0	ML	C50 C36	<u>8</u> 5	E	
56	5	0 E		C36	5	Ē		28	6	0 E		C32	5	Ē	
75	8	ΕO		C63	9	Ē		60	8	ΕO		C50	9	E	
105	9	E O		C45	6	E		56	8	E O		C40	5	E	
56	5	0 E		C45	10	E		28	6	0 E		C32 C50	5 9	E	
75 42	8	E O		C50 C45	10	E		60 40	8 7	E O		C40	8	E	
42	6	ΕO		C36	7	Ē		40	5	0 E		C32	6	Ē	
56	6	E 0		C45	4	Е		50	5	E 0		C32	4	Е	
34	6	E 0		C28	5	E		32	5	0 E		C25	4	E	
110 83	12	E O	M L	C71 C63	10 10	E		90 67	16 12	E O	M L	C63	8	E	
130	12	EO	ML	C90	10	E		110	16	EO	ML	C80	8	E	
110	12	ΕO	ML	C71	11	Ē		90	16	ΕO	ML	C63	8	Ē	
130	12	E 0	ML	C80	12	Е		90	16	E 0	МL	C63	8	Е	
105	12	E 0	ML	C63	10	E		67	12	E 0	ML	C50	8	E	
120 420	12 16	E O	M L	C63	9 24	E		80 130	16 16	E O	M L	C63	9 22	E	
420	16	EO	M	C125	24	Ē		130	16	EO	M	C125	22	Ē	
320	16	ΕO	М	C125	22	Ē		130	16	ΕO	M	C125	20	E	
280	16	E 0	М	C125	22	E		130	16	E 0	М	C125	20	Е	
240	16	E 0	M	C100	18	E		130	16	E 0	M	C100	17	Е	
280 190	16 8	ΕO	M L	C63	5	E		130 110	16 7	ΕO	M L M	C63	5	Е	
160	10	EO	IVI	C80	9	Ē		90	9	EO	IVI	C63	10	Ē	
250	20	E 0	М	C80	18	Е		110	10	E 0	М	C80	17	Е	
105	9	E 0		C40	5	E		56	8	E 0		C45	6	E	
42 30	6	E 0		C20 C28	5	E		40 24	5 4	0 E		C32 C21	<u>6</u> 5	E	
36	5	EO		C14	5	E		30	4	EO		C25	4	E	
18	3	0 E		C14	5	Ē		13	3	0 E		C14	5	Ē	
22	3	0 E		C25	5	Е		16	3	0 E		C14	5	Е	
45	5	0 E		C40	5	E		36	5	0 E		C40	5	E	
40 14	3	0 E		C22 C18	3	E		9.5	5	0 E		C25	4	E	
105	9	EO		C14	5	E		56	8	EO		C45	7	E	
105	9	E O		C14	5	Ē		56	8	E 0		C45	7	E	
38	3	0 E		C28	3	E		22	2	0 E		C25	3	E	
32	3	0 E										C25	3	Е	
32	3	0 E										C25	3	Е	
125	16	EO		C90	20	Е		90	16	E O		C100	20	E	

Solid carbide cutting data with internal cooling (part 5/8)

	= Cutting data for wet mac	nining			ing de		
	¥			De	signati	on	
	= Dry machining is possible				Type		
	Cutting data must be sele	ected from Walter GPS			nensio		
	E = Emulsion	v _c = Cutting speed			inge (n		
	0 = 0il	VCRR = v, rating chart HB page !	54		ng mat		<u> </u>
	M = MQL L = Dry	VRR = feed rate chart HB page 5		(Coating		—
₽	L = DIY			_	Page		—
Material group	Structure	of main material groups			拒		ĺ
<u> 6</u>		id code letters		- 単	l ai		ĺ
ī.		ia coac icticis		SS	a, str	ng	ĺ
ţ				= 8	nsile stre N/mm²	E -6.	ĺ
Š	Wor	kpiece material		Brinell hardness HB	Tensile strength R _m N/mm²	Machining group ¹	1
		C ≤ 0.25%	Annealed	125	428	P1	
		C > 0.25 ≤ 0.55%	Annealed	190	639	P2	
	Non-alloyed steel	C > 0.25 ≤ 0.55%	Tempered	210	708	P3	
		C > 0.55%	Annealed	190	639	P4	
		C > 0.55%	Tempered	300	1013	P5 P6	
		Free cutting steel (short-chipping) Annealed	220	745	P7	
Р		Annealed		175 300	591 1013	P8	
	Low-alloyed steel	Tempered Tempered		380	1282	P8	
		Tempered		430	1477	P10	
		Annealed		200	675	P11	
	High-alloyed steel and	Hardened and tempered		300	1013	P12	
	high-alloyed tool steel	Hardened and tempered		400	1361	P13	
		Ferritic/martensitic, annealed		200	675	P14	
	Stainless steel	Martensitic, tempered	-	330	1114	P15	
		Austenitic, quench hardened		200	675	M1	
М	Stainless steel	Austenitic, precipitation hardene	ed (PH)	300	1013	M2	
		Austenitic/ferritic, duplex		230	778	M3	
	Malleable cast iron	Ferritic		200	675	K1	
	Ivialleable cast iron	Pearlitic		260	867	K2	
	Grey cast iron	Low tensile strength		180	602	K3	
K	orey case iron	High tensile strength/austenitic		245	825	K4	
	Cast iron with spheroidal graphite	Ferritic		155	518	K5	
	GGV (CGI)	Pearlitic		265 200	885 675	K6 K7	
		Cannot be hardened		30	- 0/3	N1	
	Aluminium wrought alloys	Hardenable, hardened	-	100	343	N2	
		≤ 12% Si, cannot be hardened		75	260	N3	
	Cast aluminium alloys	≤ 12% Si, hardenable, hardened		90	314	N4	
N	<u> </u>	> 12% Si, cannot be hardened		130	447	N5	
14	Magnesium alloys			70	250	N6	
		Non-alloyed, electrolytic copper		100	343	N7	
	Copper and copper alloys	Brass, bronze, red brass		90	314	N8	
	(bronze/brass)	Cu-alloys, short-chipping		110	382	N9	
		High-strength, Ampco	Annealed	300 200	1013	N10 S1	
		Fe-based	Hardened	280	675 943	S2	
	Heat-resistant alloys		Annealed	250	839	53	
	Tiede resistant diloys	Ni or Co base	Hardened	350	1177	S4	
_		THE OF CO BUSC	Cast	320	1076	S5	
S		Pure titanium		200	675	S6	
	Titanium alloys	α and β alloys, hardened		375	1262	S7	
	,	β alloys		410	1396	S8	
	Tungsten alloys			300	1013	S9	
	Molybdenum alloys			300	1013	S10	
		Hardened and tempered		50 HRC	-	H1	
Н	Hardened steel	Hardened and tempered		55 HRC	-	H2	
• •	Hendered seek in	Hardened and tempered		60 HRC	-	H3	
	Hardened cast iron	Hardened and tempered		55 HRC	_	H4	
	Thermoplastics	Without abrasive fillers				01	
	Thermosetting plastics	Without abrasive fillers GFRP				02	
0	Plastic, glass-fibre reinforced Plastic, carbon-fibre reinforced	CFRP				03	
	Plastic, aramid-fibre reinforced	AFRP				05	
	Graphite (technical)			80 Shore		06	
			-	informa			

The specified cutting data are average recommended values. For special applications, adjustment is recommended.

									FOFS	peciai a	арриса	tions, a		ent is r	ecomm	ienaea.
		A C 7 0	4TFP	20 >	C D _c	A C 70	5TFP			A6889	DA MAD	25 >	D _c	V C 0 0	5TFP	
_	,	Ab/9 (-trem		0	-	Ab/8 Alpha®		0	X	Abboo!		5		Abbb Alpha®		5
		Valter s	tandar			Valter s				Valter s	tandar			Valter s		
		3.00 -	10.00			3.00 -	16.00			2.00 -	- 2.90			3.00 -	12.00	
_		K3				K3				K3 AN				K3	UF P	
		GK B				GK E				GK B				GK B		
		1	W			- VI					1			1	11	
		E	4			Į.	0			- (V			9	0	
		-				-					•			-		
		=₹		₹		=₹		₹		盂		□		⇉		=X
	V _c	VRR	1		V _c	VRR	1		VCRR	VRR			V _c	VRR		
					105	10	E O	ML	C80	10	E		95	9	E 0	ML
					90 85	10 10	E O	M L	C63	10 10	E		85 80	9	E O	M L
					90	10	EO	ML	C63	10	Ē		85	9	EO	ML
	63	8	E 0	МL	63	8	E O	МL	C50	8	Е		60	8	E 0	ML
					105 90	10 10	E O	M L	C80 C63	10 10	E		95 85	10 9	E O	M L
	63	8	ΕO	МL	63	8	EO	ML	C50	8	E		60	8	E O	ML
	40	7	0 E	ML	40	7	0 E		C36	5	Е		36	6	0 E	
	25	6	0 E		25	6	0 E		C32	5	Е		24	5	0 E	
_	56 53	7	E O	ML	56 53	8 7	E O		C50 C40	9 5	E		53 48	7	E O	
	25	6	0 E	IVI L	25	6	0 E		C32	5	Ē		24	5	0 E	
	56	7	E 0		56	8	ΕO		C50	9	Е		53	7	E 0	
	36	6	E 0		36 36	6 5	E 0		C40 C32	8	E		34 34	6	0 E	
	48	5	ΕO		48	5	EO		C32	4	Ē		45	5	EO	
	-10				29	5	0 E		C25	4	Е		27	4	0 E	
					85	12	E 0	ML	C63	8	E		80	12	E 0	ML
_					63 105	12 12	E O	M L	C63 C80	8 8	E		60 95	12	E O	M L
					85	12	ΕO	ML	C63	8	Ē		80	12	ΕO	ML
					85	12	E O	ML	C63	8	E		80	12	E 0	ML
_	63 71	12 12	E 0	M L	63 75	12 12	E O	M L	C50 C63	8	E		60 71	12 12	E O	M L
	/1	12	UE	IVI L	105	16	EO	M	C125	22	E		80	16	EO	M
					105	16	E 0	М	C125	22	E		80	16	E 0	М
					105	16	E O	М	C125	20	E		80	16	E 0	M
					105 105	16 16	E O	M	C125 C100	20 17	E		80	16 12	E O	M
					105	16		ML					80	16		ML
					105	7	E 0	М	C63	5	E		95	6	E 0	М
					85 105	9	E O	М	C63 C80	10 17	E		80 95	8 10	E O	М
	53	7	ΕO	М	53	7	EO	IVI	C45	6	Ē		48	7	EO	IVI
	1.0	2	0.5		36	5	0 E		C32	6	E		34	4	0 E	
	16	3	0 E		21 28	3	0 E		C19 C25	5 4	E		20 26	3	0 E	
	12	3	0 E		12	3	0 E		C14	5	E		11	2	0 E	
	15	3	0 E		15	3	0 E		C14	5	Е		14	2	0 E	
					34 21	5	0 E		C40 C25	5	E		32 19	5	0 E	
	9	3	0 E		9	3	0 E		C14	4	E		8.5	2	0 E	
	53	7	ΕO	М	53	7	ΕO		C45	7	E		48	7	ΕO	
	53	7	E 0	М	53	7	E O		C45	7	E		48	7	E 0	
	21	2	0 E		21	2	0 E		C25 C25	3	E		20	2	0 E	
									CLS							
					0=	10			C25	3	E		00	10		
					85	12	E O		C100	20	Е		80	12	E O	

 $HB = this\ handbook \cdot GK = Walter\ General\ Catalogue\ 2012 \cdot EK = Walter\ Supplementary\ Catalogue\ 2013/2014$

Solid carbide cutting data with internal cooling (part 6/8)

_								
		==== = Cutting data for wet macl	nining			ing de		
		Pour pour le la constituir de la constit			De	signati	on	
		= Dry machining is possible,				Type		
_		cutting data must be sele	ected from Walter GPS			nensio		
		E = Emulsion	v _c = Cutting speed			inge (m		
		0 = 0il	VCRR = v. rating chart HB page	5.4		ng mat		
		$\mathbf{M} = MQL$	VRR = feed rate chart HB page 5		- (
	Q.	L = Dry	VICE = reed rate chart rib page :			Page		
	Material group	Standard	of main material arrays			₽		
	g		of main material groups ad code letters		ω	l Bi		
	ā	di	iu code letters		T .	15 %	βL	
	Ē				Brinell hardness HB	Tensile strength R _m N/mm ²	Machining group ¹	
	۱a	Wor	kpiece material		Brinell	<u>≅</u> ≥	Machir group ¹	
	_				Bri	声굔	ĭ b	
			C ≤ 0.25%	Annealed	125	428	P1	
			C > 0.25 ≤ 0.55%	Annealed	190	639	P2	
		Non alloyed steel	C > 0.25 ≤ 0.55%	Tempered	210	708	P3	
		Non-alloyed steel	C > 0.55%	Annealed	190	639	P4	
			C > 0.55%	Tempered	300	1013	P5	
			Free cutting steel (short-chipping) Annealed	220	745	P6	
			Annealed	175	591	P7		
	Р	Low-alloyed steel	Tempered		300	1013	P8	
	_	Low-alloyed Steel	Tempered		380	1282	P9	
			Tempered		430	1477	P10	
		High-alloyed steel and	Annealed		200	675	P11	
		high-alloyed tool steel	Hardened and tempered		300	1013	P12	
		riigii-alioyeu tool Steel	Hardened and tempered		400	1361	P13	
		Stainless steel	Ferritic/martensitic, annealed		200	675	P14	
		Stalliless steel	Martensitic, tempered		330	1114	P15	
			Austenitic, quench hardened		200	675	M1	
	М	Stainless steel	Austenitic, precipitation harden	ed (PH)	300	1013	M2	
			Austenitic/ferritic, duplex		230	778	M3	
		Malleable cast iron	Ferritic		200	675	K1	
		Maneable case non	Pearlitic		260	867	K2	
٠.	.,	Grey cast iron	Low tensile strength		180	602	K3	
	K	orey ease non	High tensile strength/austenitic		245	825	K4	
		Cast iron with spheroidal graphite	Ferritic	155	518	K5		
			Pearlitic		265	885	K6	
		GGV (CGI)			200	675	K7	
		Aluminium wrought alloys	Cannot be hardened		30	343	N1	
		3 /	Hardenable, hardened		100		N2 N3	
		Cast aluminium alloys	≤ 12% Si, cannot be hardened ≤ 12% Si, hardenable, hardened		75 90	260 314	N4	
		Cast aluminium alloys	> 12% Si, cannot be hardened		130	447	N5	
	N	Magnesium alloys	> 12 /6 SI, Callifor De Harderieu		70	250	N6	
		Magnesiam alloys	Non-alloyed, electrolytic copper		100	343	N7	
		Copper and copper alloys	Brass, bronze, red brass		90	314	N8	
		(bronze/brass)	Cu-alloys, short-chipping		110	382	N9	
		(51611267 514357)	High-strength, Ampco		300	1013	N10	
				Annealed	200	675	S1	
			Fe-based	Hardened	280	943	S2	
		Heat-resistant alloys		Annealed	250	839	S3	
		· ·	Ni or Co base	Hardened	350	1177	S4	
	s			Cast	320	1076	S5	
	3		Pure titanium		200	675	S6	
		Titanium alloys	α and β alloys, hardened		375	1262	S7	
			β alloys		410	1396	S8	
		Tungsten alloys			300	1013	S9	
		Molybdenum alloys			300	1013	S10	
			Hardened and tempered		50 HRC	_	H1	
	н	Hardened steel	Hardened and tempered		55 HRC		H2	
	••		Hardened and tempered		60 HRC	-	H3	
		Hardened cast iron	Hardened and tempered		55 HRC		H4	
		Thermoplastics	Without abrasive fillers				01	
		Thermosetting plastics	Without abrasive fillers				02	
	n	Plastic, glass-fibre reinforced	GFRP			03		
	-	Plastic, carbon-fibre reinforced	CFRP				04	
		Plastic, aramid-fibre reinforced	AFRP		00		05	
		Graphite (technical)			80 Shore		06	
				D	infavr	41	C 4 -	

The specified cutting data are average recommended values. For special applications, adjustment is recommended.

								For s	pecial a	арриса	tions, a	ajustm	ient is r	ecomm	iended.
					30 :			A6985TFP				40 x D _c			
		9AMP			A699			<u> </u>				A7495TTP X·treme D40			
	(∙trem e Valter s				K-trem Valter s			Alpha® 4 XD30 Walter standard			Walter standard				
v	2.00 -		u			10.00	u	3.00 – 12.00						-11.00	<u>u</u>
	K3	0F			K3	0F		K30F			K30F				
	A۱				TF	P		TFP				TTP			
	EK E	3-72			GK B	137		GK B 136				EK B-73			
	1	1			1	W.					18/				
	3	l			3	a			1	a de la companya de l			- 6	7	
		9			- 4				- 4				- 9		
	=₹		→ X		= 5		=X		=		□		=₹		=X
VCRR	VRR		~	V	=	1	~	V _c	I	ı	~	V _c		,	~
C56	10	Е		V _c	VRR			95	VRR 9	ΕO	МL	90	VRR 10	ΕO	
C50	10	Ē						85	9	EO	ML	90	10	EO	
C45	10	Ē						80	9	E 0	ML	80	10	ΕO	
C50	10	Е						85	9	E 0	ML	90	10	ΕO	
C23	4	E		60	8	E 0	ML	60	8	E 0	ML	63	10	E 0	
C56	10	E						95 85	10 9	E 0	ML	80 90	10	E O	
C50 C23	10	E		60	8	ΕO	ML	85 60	8	E O	M L	71	10	E O	
C32	7	E		36	6	0 E	ML	36	6	0 E	WI L	/1	0	E 0	
C25	4	Ē		24	5	0 E		24	5	0 E					
C45	6	Е		53	7	ΕO		53	7	ΕO		80	10	E 0	
C22	4	Е		48	7	E O	МL	48	7	E 0		63	10	E 0	
C32	7	E		24	5	0 E		24	5	0 E		71			
C36	10	E		53 34	7	E O		53 34	7 6	E O		71 56	9	E O	
C25	5	E		34	0	EU		34	4	0 E		56	6	0 E	
C22	3	Ē		45	5	ΕO		45	5	EO		30	-	O L	
C18	3	Ē						27	4	0 E		50	6	0 E	
C45	8	Е						80	12	E 0	ML	90	12	E O	
C40	5	E						60	12	E 0	ML	71	9	E 0	
C45	8	Ē						95	12	E 0	ML	90	11	E 0	
C45 C50	7	E						80 80	12	E O	ML	90 90	12	E O	
C40	5	Ē		60	12	ΕO	МL	60	12	EO	ML	71	9	EO	
C40	5	Ē		71	12	0 E	ML	71	12	E 0	ML	71	9	ΕO	
C90	22	Е						80	16	E 0	М	90	13	ΕO	
C90	22	Е						80	16	E O	М	90	13	E O	
C90	15	E						80	16	E 0	M	90	13	E 0	
C90 C71	15 13	E						80 80	16 12	E O	M	90	13	E O	
C/1	13	-						80	16	E 0	ML	30	13	E 0	
C32	4	Е						95	6	ΕO	M	90	13	ΕO	
C56	6	Е						80	8	E 0		90	13	ΕO	
C56	13	E						95	10	E 0	М				
C28 C14	3	E		48	7	E 0	М	48 34	7	E 0					
C20	4	E		15	2	0 E		20	3	0 E					
C10	4	Ē		13		0.2		26	3	EO					
C10	3	Ē		11	2	0 E		11	2	0 E					
C16	3	Е		14	2	0 E		14	2	0 E					
C28	4	Е						32	5	0 E					
C14	3	E		9	2	0 E		19	4	0 E		32	4	0 E	
C12 C10	2	E		48	7	EO	М	8,5 48	7	E O					
C10	4	Ē		48	7	EO	M	48	7	EO					
C20	2	Ē		20	2	0 E		20	2	0 E					
C63	14	Е						80	12	ΕO					
C03	14	E						OU	12	EU					

Solid carbide cutting data with internal cooling (part 7/8)

_								
		==== = Cutting data for wet macl	nining			ing de		
		Pour pour le la constituir de la constit			De	signati	on	
		= Dry machining is possible,				Type		
_		cutting data must be sele	ected from Walter GPS			nensio		
		E = Emulsion	v _c = Cutting speed			inge (m		
		0 = 0il	VCRR = v. rating chart HB page	5.4		ng mat		
		$\mathbf{M} = MQL$	VRR = feed rate chart HB page 5		- (
	Q.	L = Dry	VICE = reed rate chart rib page :			Page		
	Material group	Standard	of main material arrays			₽		
	g		of main material groups ad code letters		ω	l Bi		
	ā	di	iu code letters		T .	15 %	βL	
	Ē				Brinell hardness HB	Tensile strength R _m N/mm ²	Machining group ¹	
	۱a	Wor	kpiece material		Brinell	<u>≅</u> ≥	Machir group ¹	
	_				Bri	声굔	ĭ b	
			C ≤ 0.25%	Annealed	125	428	P1	
			C > 0.25 ≤ 0.55%	Annealed	190	639	P2	
		Non alloyed steel	C > 0.25 ≤ 0.55%	Tempered	210	708	P3	
		Non-alloyed steel	C > 0.55%	Annealed	190	639	P4	
			C > 0.55%	Tempered	300	1013	P5	
			Free cutting steel (short-chipping) Annealed	220	745	P6	
			Annealed	175	591	P7		
	Р	Low-alloyed steel	Tempered		300	1013	P8	
	_	Low-alloyed Steel	Tempered		380	1282	P9	
			Tempered		430	1477	P10	
		High-alloyed steel and	Annealed		200	675	P11	
		high-alloyed tool steel	Hardened and tempered		300	1013	P12	
		riigii-alioyeu tool Steel	Hardened and tempered		400	1361	P13	
		Stainless steel	Ferritic/martensitic, annealed		200	675	P14	
		Stalliless steel	Martensitic, tempered		330	1114	P15	
			Austenitic, quench hardened		200	675	M1	
	М	Stainless steel	Austenitic, precipitation harden	ed (PH)	300	1013	M2	
			Austenitic/ferritic, duplex		230	778	M3	
		Malleable cast iron	Ferritic		200	675	K1	
		Maneable case non	Pearlitic		260	867	K2	
٠.	.,	Grey cast iron	Low tensile strength		180	602	K3	
	K	orey ease non	High tensile strength/austenitic		245	825	K4	
		Cast iron with spheroidal graphite	Ferritic	155	518	K5		
			Pearlitic		265	885	K6	
		GGV (CGI)			200	675	K7	
		Aluminium wrought alloys	Cannot be hardened		30	343	N1	
		3 /	Hardenable, hardened		100		N2 N3	
		Cast aluminium alloys	≤ 12% Si, cannot be hardened ≤ 12% Si, hardenable, hardened		75 90	260 314	N4	
		Cast aluminium alloys	> 12% Si, cannot be hardened		130	447	N5	
	N	Magnesium alloys	> 12 /6 SI, Callifor De Harderieu		70	250	N6	
		Magnesiam alloys	Non-alloyed, electrolytic copper		100	343	N7	
		Copper and copper alloys	Brass, bronze, red brass		90	314	N8	
		(bronze/brass)	Cu-alloys, short-chipping		110	382	N9	
		(51611267 514357)	High-strength, Ampco		300	1013	N10	
				Annealed	200	675	S1	
			Fe-based	Hardened	280	943	S2	
		Heat-resistant alloys		Annealed	250	839	S3	
		· ·	Ni or Co base	Hardened	350	1177	S4	
	s			Cast	320	1076	S5	
	3		Pure titanium		200	675	S6	
		Titanium alloys	α and β alloys, hardened		375	1262	S7	
			β alloys		410	1396	S8	
		Tungsten alloys			300	1013	S9	
		Molybdenum alloys			300	1013	S10	
			Hardened and tempered		50 HRC	_	H1	
	н	Hardened steel	Hardened and tempered		55 HRC		H2	
	••		Hardened and tempered		60 HRC	-	H3	
		Hardened cast iron	Hardened and tempered		55 HRC		H4	
		Thermoplastics	Without abrasive fillers				01	
		Thermosetting plastics	Without abrasive fillers				02	
	n	Plastic, glass-fibre reinforced	GFRP			03		
	-	Plastic, carbon-fibre reinforced	CFRP				04	
		Plastic, aramid-fibre reinforced	AFRP		00		05	
		Graphite (technical)			80 Shore		06	
				D	infavr	41	C 4 -	

The specified cutting data are average recommended values. For special applications, adjustment is recommended.

		50	x D _c							Pilot	drill						
			5TTP			K328	B1TFT		A6181AML				A6181TFT				
			ne D50	1	Y.tre		lot Ste	n qn	y.4	reme		50	XD Pilot				
_																	
	V	vaiter s	tandar	u	V	vaiter s	tandar	u	Walter standard			u	Walter standard				
			9.00			3.00 -	16.00		2.00 - 2.95			3.00 - 16.00					
			0F			K3	OF			K3	OF		K30F				
		Т.	ĪΡ			TF	FT		AML				TFT				
			68				3-74		<u> </u>	GK B			GK B 118				
		110	00			LIV L	J-74		\vdash	OKE	111/		GK B 116				
		- 1	K.			- 1	W .			1	K .		Val				
		- 41	70							- (B			//	A		
		- 6	8 1			- 4				J	ħ.				7		
}						_		-				-					
		=₹		₹		=₹		□ ズ		= ₹		 ₹		₹		=X	
										A							
1	٧,	VRR]	1	V _c	VRR]	İ	VCRR	VRR		l i	V _C	VRR	1		
	90	10	ΕO		120	12	E O	ML	C100	12	Е		120	12	E O	МL	
	90	10	EO		105	12	EO	ML	C80	12	Ē		105	12	EO	ML	
						12		ML						12			
	80	10	E 0		100	12	E 0	ML	C80	12	Е		100	12	E 0	ML	
	90	10	E O		105	12	E O	ML	C80	12	Е		105	12	E O	ML	
	63	10	E O		75	9	E O	ML	C67	9	E		75	9	E O	ML	
	80	10	ΕO		120	12	E O	ML	C100	12	Е		120	12	E O	ML	
	90	10	ΕO		105	12	EO	ML	C80	12	Ē		105	12	EO	ML	
	71	8	E O		75	9	E O	ML	C67	9	E		75	9	E O	ML	
					50	6	0 E	ML	C45	6	Е		50	6	0 E	ML	
					42	4	0 E		C40	6	Е		42	4	0 E		
	80	10	ΕO		67	9	ΕO		C63	10	E		67	9	ΕO		
	63	10	EO		60	7	EO	ML	C50	6	Ē		60	7	EO	ML	
	0.5	10	EU				0 E	ML								ML	
					42	4			C40	6	Е		42	4	0 E		
	71	9	E O		67	9	E O		C63	10	Е		67	9	E O		
	56	- 8	E O		42	7	E O		C50	8	Е		42	7	E O		
	56	6	0 E		42	5	E O		C40	8	Е		42	5	E O		
	50				56	6	ΕO		C50	6	Ē		56	6	ΕO		
		_	~ =						CJU								
	50	6	0 E		34	5	E O		C25	5	E		34	5	E 0		
	90	12	E O		100	16	E O	ML	C80	10	E		100	16	E O	ML	
	71	9	E O		75	16	E O	ML	C80	10	Е		75	16	E O	ML	
	90	11	ΕO		120	16	E O	ML	C100	10	Е		120	16	ΕO	МL	
	90	12	ΕO		100	16	EO	ML	C80	10	Ē		100	16	ΕO	ML	
	90	11	E O		95	20	E	ML	C80	10	E		95	20	E	ML	
	71	9	E O		75	16	E O	ML	C63	10	E		75	16	E O	ML	
	71	9	E O		85	20	0 E	ML	C71	10	Е		85	20	0 E	ML	
	90	13	ΕO		400	16	E O	М	C160	20	Е		400	16	ΕO	М	
	90	13	EO		400	16	EO	M	C160	20	Ē		400	16	EO	M	
	90	13	E O		250	16	E O	М	C160	20	Е		250	16	E O	M	
	90	13	E O		240	16	E O	M	C160	20	E		240	16	E O	M	
	90	13	E O		190	16	E O	М	C125	20	Е		190	16	E O	M	
					240	16		ML					240	16		ML	
	90	13	ΕO		210	9	ΕO	M	C80	6	Е		210	9	ΕO	M	
								IVI		12						IVI	
	90	13	E 0		180	12	E 0		C80		E		180	12	E O		
					190	16	E O	M	C100	20	E		190	16	E O	M	
					60	7	E O	М	C56	8	Е		60	7	E O	M	
					42	5	E 0		C40	8	Е		42	5	E O		
					26	4	0 E		C22	6	Ē		26	4	0 E		
					32	4	EO		C25	5	Ē		32	4	EO		
					16	3	0 E		C20	6	E		16	3	0 E		
					20	3	0 E		C20	6	E		20	3	0 E		
					56	6	0 E		C50	6	Е		56	6	0 E		
	32	4	0 E		48	5	0 E		C32	5	Ē		48	5	0 E		
	JL		0.2		12	3	0 E		C20	5	Ē		12	3	0 E		
								14	CEC							14	
					60	7	E O	М	C56	8	E		60	7	E O	М	
					60	7	E O	M	C56	8	E		60	7	E O	M	
					36	3	0 E		C40	3	Е		36	3	0 E		
					31	3	0 E		C40	3	E		31	3	0 E		
					31		0.2		240	,	-		51		0.2		
					21	-	0.5		6/0	_	-		21	-	0.5		
					31	3	0 E		C40	3	E		31	3	0 E		
					100	16	E O		C100	20	E		100	16	E O		

 $HB = this\ handbook \cdot GK = Walter\ General\ Catalogue\ 2012 \cdot EK = Walter\ Supplementary\ Catalogue\ 2013/2014$

Solid carbide cutting data with internal cooling (part 8/8)

_					ling de					
	= Cutting data for wet mac	= Cutting data for wet machining								
	I 5			De	signati	on				
	= Dry machining is possible cutting data must be sele				Type					
_	cutting data must be sele	ected from Walter GPS			mensio					
	E = Emulsion	\mathbf{v}_{c} = Cutting speed			ange (n					
	0 = 0il	VCRR = v, rating chart HB page	E.	Cutti	ng mat	erial				
	M = MQL	VRR = feed rate chart HB page		(
_	L = Dry	VKK = reed rate chart HB page :	55		Page					
Material group					£					
Ě	Structure	of main material groups		_ m	-g					
-	ar	nd code letters		一宝	E ~	Б				
- 2				SS	ts E	-				
ŧ				무	∰ 5	투교				
Σ	Wo	rkpiece material		Brinell hardness HB	Tensile strength R N/mm²	Machining group ¹				
		C ≤ 0.25%	Annealed	125	428	P1				
		C > 0.25 ≤ 0.55%	Annealed	190	639	P2				
		C > 0.25 ≤ 0.55%	Tempered	210	708	P3				
	Non-alloyed steel	C > 0.55%	Annealed	190	639	P4				
		C > 0.55%	Tempered	300	1013	P5				
		Free cutting steel (short-chipping		220	745	P6				
		Annealed	175	591	P7					
P		Tempered		300	1013	P8				
-	Low-alloyed steel	Tempered		380	1282	P9				
				430	1477	P10				
		Tempered				P10				
	High-alloyed steel and	Annealed		200	675	P11				
	high-alloyed tool steel	Hardened and tempered		300	1013 1361	P12				
	3 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Hardened and tempered		400						
	Stainless steel	Ferritic/martensitic, annealed		200	675	P14				
		Martensitic, tempered		330	1114	P15				
	Chairless short	Austenitic, quench hardened	L (DIII)	200	675	M1				
N	Stainless steel	Austenitic, precipitation harden	ed (PH)	300	1013	M2				
		Austenitic/ferritic, duplex		230	778	M3				
	Malleable cast iron	Ferritic		200	675	K1				
		Pearlitic Low tensile strength		260	867	K2				
14	Grey cast iron	180	602	K3						
K		High tensile strength/austenition	245	825	K4					
	Cast iron with spheroidal graphite	Ferritic	155	518	K5					
		Pearlitic		265	885	K6				
	GGV (CGI)			200	675	K7				
	Aluminium wrought alloys	Cannot be hardened		30	-	N1				
		Hardenable, hardened		100	343	N2				
		≤ 12% Si, cannot be hardened		75	260	N3				
	Cast aluminium alloys	≤ 12% Si, hardenable, hardened		90	314	N4				
N	1	> 12% Si, cannot be hardened		130	447	N5				
	Magnesium alloys	N II I I I I I I		70	250	N6				
		Non-alloyed, electrolytic copper		100	343	N7				
	Copper and copper alloys	Brass, bronze, red brass		90	314	N8				
	(bronze/brass)	Cu-alloys, short-chipping		110	382	N9				
		High-strength, Ampco	Ammanlani	300	1013	N10				
		Fe-based	Annealed	200	675	S1				
	Hast maintant allows		Hardened	280	943	S2				
	Heat-resistant alloys	Ni C- h	Annealed	250	839	S3				
		Ni or Co base	Hardened	350	1177	S4				
S			Cast	320	1076	S5				
_		Pure titanium		200	675	S6				
	Titanium alloys	α and β alloys, hardened		375	1262	S7				
	T	β alloys		410	1396	S8				
	Tungsten alloys			300	1013	S9				
	Molybdenum alloys			300	1013	S10				
	Handan ad ata al	Hardened and tempered		50 HRC	-	H1				
Н	Hardened steel	Hardened and tempered		55 HRC	-	H2				
	·	Hardened and tempered		60 HRC	-	H3				
	Hardened cast iron	Hardened and tempered		55 HRC	_	H4				
	Thermoplastics	Without abrasive fillers				01				
	Thermosetting plastics		Without abrasive fillers							
C	Plastic, glass-fibre reinforced	GFRP	RP							
-	' I Plastic, carbon-fibre reinforced	CFRP				04				
	Plastic, aramid-fibre reinforced	AFRP				05				
	Graphite (technical)			80 Shore		06				
			D	: 6		C				

			D:1 4	ilot drill							
	A719	1777	Pilot	K5191TFT							
V.			00	X-treme Pilot 180C							
	treme										
v	Valter s		a	V	Valter s	zandar	<u>a</u>				
		10.00 0F				- 7.00					
_		UF T		K30F TFT							
_				GK B 140							
6	K B 13	8, HB 6	10		UN E	140					
	V.	8									
	- 71	K.			V	v					
		-									
	=======================================		■		=₹		□				
	=				=						
V _c	VRR			V _c	VRR						
120	9	E 0	ML	120	9	E 0	ML				
105	8	E O	ML	105	8	E O	ML				
100	8	E O	ML	100	8	E O	ML				
105	- 8	E O	ML	105	8	E O	ML				
75	6	E O	ML	75	6	E O	ML				
120	9	E 0	ML	120	9	E 0	ML				
105	8	E 0	ML	105	8	E 0	ML				
75	6	E 0	ML	75	6	E 0	ML				
50	4	0 E	ML	50	4	0 E	ML				
42	2	0 E		42	2	0 E					
67	6	E 0		67	6	E 0					
60	5	E 0	ML	60	5	E 0	МL				
42	2	0 E		42	2	0 E					
67	6	E O		67	6	E O					
42	5	E O		42	5	E O					
42	4	E O		42	4	E 0					
56	4	E O		56	4	E O					
34	4	E O		34	4	E O					
100	12	E O	ML	100	12	E O	ML				
75	12	E 0	ML	75	12	E 0	ML				
120	12	E O	ML	120	12	E O	ML				
100	12	E O	ML	100	12	E O	ML				
100	12	E O	ML	100	12	E O	ML				
75	12	E 0	ML	75	12	E 0	ML				
90	12	E O	ML	90	12	E O	ML				
400	12	E O	М	400	12	E O	M				
400	12	E O	М	400	12	E O	M				
250	12	E O	М	250	12	E O	M				
240	12	E O	М	240	12	E O	М				
190	10	E O	М	190	10	E O	M				
240	12		МL	240	12		ML				
210	6	E O	М	210	6	E 0	М				
180	8	E 0		180	8	E 0					
190	12	E O	М	190	12	E O	М				
60	5	E 0	М	60	5	E 0	M				
42	4	E 0		42	4	E 0					
26	3	0 E		26	3	0 E					
32	3	E 0		32	3	E 0					
16	2	0 E		16	2	0 E					
20	2	0 E		20	2	0 E					
56	5	0 E		56	5	0 E					
48	4	0 E		48	4	0 E					
12	2	0 E		12	2	0 E					
60	5	E 0	М	60	5	E 0	M				
60	5	E 0	М	60	5	E 0	М				
36	2	0 E		36	2	0 E					
31	2	0 E		31	2	0 E					
21	2	0 -		21	-	0 -					
31	2 12	0 E		31	2 12	0 E					
100	12	E 0		100	12	E O					

The specified cutting data are average recommended values. For special applications, adjustment is recommended.

 $HB = this\ handbook \cdot GK = Walter\ General\ Catalogue\ 2012 \cdot EK = Walter\ Supplementary\ Catalogue\ 2013/2014$

Solid carbide cutting data without internal cooling

		= Cutting data for wet mach	nining			ing de		
		= Dry machining is possible,			De	signati	on	
		cutting data must be sele			Dir	Type nensio	ne	
		E = Emulsion				inge (m		
		0 = 0il	v _c = Cutting speed VCRR = v _c rating chart HB page 5	.,		ng mat		
		$\mathbf{M} = MQL$	VRR = feed rate chart HB page 5	5	(Coating		
	₽	L = Dry	Title = recarace chare his page 3		_	Page	1	
	Material group	Structure of	of main material groups		_	Tensile strength R N/mm²		
- 7	e .	an	d code letters		里	trer 2	б	
7	e e			-	Brinell hardness HB	e st	Machining group ¹	
1	۱at	Wor	kpiece material	Brinell	<u>.</u> ≥	Machin group ¹		
	_		•			声굔		
			C ≤ 0.25%	Annealed	125	428	P1	
			C > 0.25 ≤ 0.55%	Annealed	190 210	639 708	P2 P3	
		Non-alloyed steel	C > 0.25 ≤ 0.55% C > 0.55%	Tempered Annealed	190	639	P4	
			C > 0.55%	Tempered	300	1013	P5	
			Free cutting steel (short-chipping)	220	745	P6		
			Annealed	175	591	P7		
ŀ	ר	Low-alloyed steel	Tempered		300	1013	P8	
		,	Tempered Tempered		380 430	1282 1477	P9 P10	
			Annealed		200	675	P11	
		High-alloyed steel and	Hardened and tempered		300	1013	P12	
		high-alloyed tool steel	Hardened and tempered		400	1361	P13	
		Stainless steel	Ferritic/martensitic, annealed		200	675	P14	
			Martensitic, tempered Austenitic, quench hardened		330 200	1114 675	P15 M1	
N	л	Stainless steel	Austenitic, quench nardened Austenitic, precipitation hardene	d (PH)	300	1013	M2	
	"	Staniess seed	Austenitic/ferritic, duplex	u (1 11)	230	778	M3	
		Malleable cast iron	Ferritic		200	675	K1	
		Malleable cast IIOII	Pearlitic		260	867	K2	
L	(Grey cast iron	Low tensile strength		180	602	K3	
r	`		High tensile strength/austenitic Ferritic		245 155	825 518	K4 K5	
		Cast iron with spheroidal graphite	Pearlitic		265	885	K6	
		GGV (CGI)			200	675	K7	
		Aluminium wrought alloys	Cannot be hardened		30	-	N1	
		<u> </u>	Hardenable, hardened ≤ 12% Si, cannot be hardened		100 75	343 260	N2 N3	
		Cast aluminium alloys	≤ 12% Si, carriot be riarderied ≤ 12% Si, hardenable, hardened		90	314	N4	
	v		> 12% Si, cannot be hardened		130	447	N5	
	4	Magnesium alloys			70	250	N6	
		6 "	Non-alloyed, electrolytic copper		100	343	N7	
		Copper and copper alloys (bronze/brass)	Brass, bronze, red brass Cu-alloys, short-chipping		90 110	314 382	N8 N9	
		(DIGITZE/DIASS)	High-strength, Ampco		300	1013	N10	
			Fe-based	Annealed	200	675	S1	
			re-paseu	Hardened	280	943	S2	
		Heat-resistant alloys	Ni or Co base	Annealed Hardened	250 350	839 1177	S3	
			NI OF CO Dase	Cast	320	1076	S4 S5	
5	5		Pure titanium	Cast	200	675	S6	
		Titanium alloys	α and β alloys, hardened		375	1262	S7	
		<u> </u>	β alloys		410	1396	S8	
		Tungsten alloys			300	1013	S9	
		Molybdenum alloys	Hardened and tempered		300 50 HRC	1013	S10 H1	
		Hardened steel	Hardened and tempered Hardened and tempered		55 HRC		H2	
ŀ	1	naraciica steel	Hardened and tempered		60 HRC	-	H3	
		Hardened cast iron	Hardened and tempered		55 HRC		H4	
		Thermoplastics	Without abrasive fillers				01	
		Thermosetting plastics	Without abrasive fillers			02		
(Plastic, glass-fibre reinforced Plastic, carbon-fibre reinforced		GFRP CFRP				03	
		Plastic, carbon-fibre reinforced	AFRP			05		
		Graphite (technical)		80 Shore		06		

_			2	_							
				3 x D _c							
	K327	9XPL		A3279XPL · A3879XPL							
χ.	treme	Step 9	90			eme					
V	vaiter s	tandar	a		ם אווע	537 K					
	3.30 -	14.50			3.00 -	20.00					
	K3	0F			K3	0F					
_	XI				XI						
_											
	EK B	-110		E	K B-26	6 / B-5	0				
		į,		(A)							
	1	1			(B)	100					
		/									
_	-										
	=₹		₹		=₹		X				
V _c	VRR	ì		V _c	VRR	1					
110				110							
110	12	ΕO	ML	110	12	E O	ML				
120	12	E O	ML	120	12	E O	ML				
110	12	ΕO	ML	110	12	ΕO	ML				
	12										
120	12	E O	ML	120	12	E 0	ML				
95	10	E O	ML	95	10	E O	ML				
110	12	ΕO	ML	110	12	ΕO	ML				
120	12	E O	ML	120	12	E O	ML				
95	10	ΕO	ML	95	10	ΕO	МL				
	7				7						
63		0 E		63	7	0 E					
48	5	0 E		48	5	0 E					
63	9	ΕO		63	9	ΕO					
80	9	E O		80	9	E O					
48	5	0 E		48	5	0 E					
63	9	EO		63	9	EO					
40	7	E O		40	7	E O					
E2	С	ΕO		E2	c	E O					
53	6	E O		53	6	E O					
90	16	ΕO	ML	90	16	E O	МL				
90	16	E O	ML	90	16	E 0	ML				
110	16	E O	ML	110	16	E O	ML				
95	16	E O	МL	95	16	E O	МL				
				110							
110	16	E O	ML	110	16	E O	ML				
90	16	E O	ML	90	16	E O	ML				
100	16	ΕO	МL	100	16	ΕO	МL				
			IVI				IVI L				
260	10	E O		260	10	E O					
260	10	E O		260	10	E O					
240	16	ΕO		240	16	E O					
210	16	ΕO		210	16	E O					
170	12	E O		170	12	E O					
200	7	ΕO	М	200	7	E 0	M				
			IVI				М				
170	12	E O		170	12	E 0					
190	16	ΕO	ML	190	16	E O	ML				
	F	EO	.** -	67	5	ΕO					
67	5	EU		07	2	EU					
42	5	0 E		42	5	0 E					
36	4	0 E		36	4	0 E					
67	5	E O		67	5	E O					
	5				5						
67		E 0		67		E 0					
34	4	0 E		34	4	0 E					
26	3	0 E		26	3	0 E					
- 20				LU		-					
26	3	0 E		26	3	0 E					
95	16	E O		95	16	E O					

The specified cutting data are average recommended values. For special applications, adjustment is recommended.

 $HB = this\ handbook \cdot GK = Walter\ General\ Catalogue\ 2012 \cdot EK = Walter\ Supplementary\ Catalogue\ 2013/2014$

VCRR: RPM diagram Solid carbide micro-drills

VRR: Feed rate charts for HSS and carbide drills, core drills, countersinks and centre drills

VRR	Feed rate f (mm) for Ø (mm)												
VICIO	0,25	0,4	0,5	0,6	0,8	1	1,2	1,5	2	2,5			
1	0,001	0,001	0,002	0,002	0,003	0,003	0,004	0,005	0,007	0,008			
2	0,002	0,003	0,003	0,004	0,005	0,007	0,008	0,010	0,013	0,017			
3	0,003	0,004	0,005	0,006	0,008	0,010	0,012	0,015	0,020	0,025			
4	0,003	0,005	0,007	0,008	0,011	0,013	0,016	0,020	0,027	0,033			
5	0,004	0,007	0,008	0,010	0,013	0,017	0,020	0,025	0,033	0,042			
6	0,005	0,008	0,010	0,012	0,016	0,020	0,024	0,030	0,040	0,050			
7	0,006	0,009	0,012	0,014	0,019	0,023	0,028	0,035	0,047	0,058			
8	0,007	0,011	0,013	0,016	0,021	0,027	0,032	0,040	0,053	0,067			
9	0,008	0,012	0,015	0,018	0,024	0,030	0,036	0,045	0,060	0,075			
10	0,008	0,013	0,017	0,020	0,027	0,033	0,040	0,050	0,067	0,083			
12	0,010	0,016	0,020	0,024	0,032	0,040	0,048	0,060	0,080	0,10			
16	0,013	0,021	0,027	0,032	0,043	0,053	0,064	0,080	0,11	0,13			
20	0,017	0,027	0,033	0,040	0,053	0,067	0,080	0,10	0,13	0,17			

VRR	Feed rate f (mm) for Ø (mm)												
*****	4	5	6	8	10	12	15	20	25	40			
1	0,013	0,017	0,018	0,021	0,024	0,026	0,029	0,033	0,037	0,047			
2	0,027	0,033	0,037	0,042	0,047	0,052	0,058	0,067	0,075	0,094			
3	0,040	0,050	0,055	0,063	0,071	0,077	0,087	0,10	0,11	0,14			
4	0,053	0,067	0,073	0,084	0,094	0,10	0,12	0,13	0,15	0,19			
5	0,067	0,083	0,091	0,11	0,12	0,13	0,14	0,17	0,19	0,24			
6	0,080	0,10	0,11	0,13	0,14	0,15	0,17	0,20	0,22	0,28			
7	0,093	0,12	0,13	0,15	0,16	0,18	0,20	0,23	0,26	0,33			
8	0,11	0,13	0,15	0,17	0,19	0,21	0,23	0,27	0,30	0,38			
9	0,12	0,15	0,16	0,19	0,21	0,23	0,26	0,30	0,34	0,42			
10	0,13	0,17	0,18	0,21	0,24	0,26	0,29	0,33	0,37	0,47			
12	0,16	0,20	0,22	0,25	0,28	0,31	0,35	0,40	0,45	0,57			
16	0,21	0,27	0,29	0,34	0,38	0,41	0,46	0,53	0,60	0,75			
20	0,27	0,33	0,37	0,42	0,47	0,52	0,58	0,67	0,75	0,94			

Designations

Designations in catalogue

	1
Dc	Cutting diameter
d ₁	Shank diameter
d ₁₀	Step diameter
Lc	Effective length
l ₁	Overall length
l ₂	Flute length
15	Shank length

Cutting materials

HSS cutting materials

4 groups of high-speed steel are used for Walter Titex tools:

HSS	High-speed steel for general applications (twist drills, core drills, countersinks, reamers in some cases, centre drills, multi-diameter step drills)
HSS-E	High-speed steel with 5% Co to withstand higher stress, especially thermal stress (high-performance twist drills, reamers in some cases)
HSS-E Co8	High-speed steel with 8% Co for maximum thermal loading capability, in accordance with American standard designation M42 (special tools)
HSS-PM	High-speed steel manufactured using powder metallurgy with an extremely high alloy content. Advantages: High degree of purity and uniformity of the joint, outstanding wear resistance and thermal loading capability (special tools)

	Material no.	Short name	Old standard designation	AISI ASTM	AFNOR	B.S.	UNI
HSS	1.3343	S 6-5-2	DMo5	M2	-	BM2	HS 6-5-2
HSS-E	1.3243	S 6-5-2-5	EMo5 Co5	M35	6.5.2.5	-	HS 6-5-2-5
HSS-E Co8	1.3247	S 2-10-1-8	-	M42	-	BM42	HS 2-9-1-8
HSS-PM			Tra	ade name A	SP		

	Alloy table									
	С	Cr W Mo V Co								
HSS	0,82	4,0	6,5	5,0	2,0	-				
HSS-E	0,82	4,5	6,0	5,0	2,0	5,0				
HSS-E Co8	1,08	4,0	1,5	9,5	1,2	8,25				
HSS-PM			Trade na	me ASP						

Carbide cutting materials

Carbides mainly consist of tungsten carbide (WC) as the hard material and cobalt (Co) as the binding material. In the majority of cases, the cobalt content is between 6 and 12%. The following rule generally applies: The higher the cobalt

content, the tougher the material, but the less resistance to wear and viceversa. Another determining factor in carbides is the grain size. The hardness increases as the grain size becomes finer.

		Co in %	Grain size	Hardness HV
K10	Extremely wear-resistant substrate Use in brazed drilling and boring tools	6	normal	1650
K20F	Extremely wear-resistant substrate with fine grain size Use in short-chipping materials such as cast iron workpieces	6-7	fine	1650-1800
K30F	Extremely fine substrate, extremely tough and wear-resistant Universal application for a variety of materials	10	finest	1550

Surface treatments and hard material coatings for increasing performance

Surface treatments

Steam treatment of tools made from HSS

from HSS Implementation

Nitriding of tools made

Implementation

Dry steam atmosphere, 520 to 580 $^{\circ}\text{C}$

Treatment in media giving off nitrogen, 520 to 570 $^{\circ}\text{C}$

Effect

Adherent oxide layer consisting of Fe₃O₄ approx. 0.003 to 0.010 mm deep

Effect

Enrichment of surface with nitrogen and partially with carbon

Property

- Low tendency towards cold welding, increased surface hardness and therefore improved wear resistance
- Increased corrosion resistance
- Improved sliding properties due to better lubricant adhesion as a result of FeO crystals
- Reduction in grinding stress

Property

- Low tendency towards cold welding and build-up on the cutting edge
- Increased hardness and therefore greater wear resistance

Hard material coatings

Surface coating has developed into a proven technological process for improving the performance of metal cutting tools. In contrast to surface treatment, the tool surface remains chemically unaltered and a thin layer is applied. With Walter Titex tools made from high-speed steel and carbide, PVD processes are used for the coating which operate at process temperatures of less than 600 °C and therefore do not change the basic tool material. Hard material layers have a higher hardness and wear resistance than the cutting material itself.

In addition, they:

- Keep the cutting material and the material to be machined apart
- Act as a thermal insulation layer
 Coated tools not only have a longer service life, but they can also be used with higher cutting speeds and feed rates.

Surface treatment/ coating	Process/ coating	Property	Example tool
Uncoated	No treatment	-	
Steamed	Steam treatment	Universal treatment for HSS	\$
Fibre-steamed	Steam treatment	Universal treatment of lands for HSS	
TiN	TiN coating	Universal coating	
TIP	TiN tip coating	Special coating for optimum chip evacuation	
TFL	Tinal coating	High-performance coating with wide application area	
TFT	Tinal TOP coating	High-performance coating with particularly low friction	
TFP	Tinal tip coating	High-performance coating for optimum chip evacuation	
TTP	Tinal TOP tip coating	High-performance coating with particularly low friction	
TML	Tinal microcoating	Special coating for small drills with extremely low friction	
XPL	AICrN coating	High-performance coating for maximum wear resistance	
DPL	Double coating	High-performance coating for maximum wear resistance	
DPP	Double tip coating	High-performance coating for maximum wear resistance	
AML	AITiN microcoating	Special coating for small drills with extremely low friction	
AMP	AITiN micro tip coating	Special coating for small drills with extremely low friction	
TMS	AITiN thin coating	High-performance coating for solid carbide reaming tools	

Walter Titex X-treme drill family

Workpiece material group

		Р	М	K	N	s	н	0		
Tool type	Remarks on field of application	Steel	Stainless steel	Cast iron	NF metals	Difficult-to-cut materials	Hard materials	Other	Drilling depth 2 x D _c	
X-treme Pilot 150	Pilot drill, specially designed for X-treme DM 150° point angle	••	••	••	••	••	••	••	A6181AML	
X-treme M, DM8 DM30	- Solid carbide micro deep-hole drill diameter 2.00 – 2.95 mm, 5 to 30 x D, with internal cooling - D stands for "Deep" - M stands for "Micro" - For universal use	••	••	••	••	••	•	••		
Alpha® 4 Plus Micro	- Solid carbide micro-drill diameter 0.75–1.95 mm, 8 and 12 x D, with internal cooling - For universal use	••	••	••	••	••	•	••		
Alpha® 2 Plus Micro	Solid carbide micro-drill diameter 0.5–3 mm, 5 and 8 x D, without internal cooling For universal use	••		••	••	••	•	••		
X-treme Step 90	Solid carbide chamfer drill with internal cooling Step length in accordance with DIN 8378 Can be used universally with high cutting data	••	••	••	••	••	••			
X-treme Step 90	Solid carbide chamfer drill without internal cooling Step length in accordance with DIN 8378 Can be used universally with high cutting data	••	••	••	••	••	••	••		

Drilling depth

3 x D _c	5 x D _c	8 x D _c	12 x D _c	16 x D _c	20 x D _c	25 x D _c	30 x D _c
	A3389AML	A6489AMP	A6589AMP	A6689AMP	A6789AMP	A6889AMP	A6989AMP
		A6488TML	A6588TML				
	A3378TML	A6478TML					
*K3299XPL K3899XPL							
K3879XPL							

One-piece = HA shank

^{*} Two-piece = HA shank HE shank

Walter Titex X-treme drill family

Workpiece material group

		Р	М	K	N	s	н	0		
Tool type	Remarks on field of application	Steel	Stainless steel	Cast iron	NF metals	Difficult-to-cut materials	Hard materials	Other	Drilling depth 2 x D _c	
X-treme	Solid carbide drill in accordance with DIN 6537 short/long with internal cooling Can be used universally with high cutting data	••	••	••	••	••	••			
X-treme	Solid carbide drill in accordance with DIN 6537 short/long without internal cooling Can be used universally with high cutting data	••	••	••	••	••	••	••		
X-treme Plus	Solid carbide high-performance drill in accordance with DIN 6537 short/long with internal cooling Can be used universally with maximum cutting data	••	••	••	••	••	••	•		
X-treme CI	Solid carbide high-performance drill in accordance with DIN 6537 long with internal cooling Specially developed for cast iron materials CI stands for "cast iron"			••						
X-treme Inox	Solid carbide drill in accord- ance with DIN 6537 short/long with internal cooling Specially developed for stainless steels	••	••		•	••		•		
Alpha® Ni	Solid carbide drill in accord- ance with DIN 6537 long with internal cooling Specially developed for Ni alloys	•	•			••	•			

Drilling depth

3 x D _c	5 x D _c	8 x D _c	12 x D _c	16 x D _c	20 x D _c	25 x D _c	$30 \times D_c$
	*A3399XPL A3999XPL						
*A3279XPL A3879XPL	*A3379XPL A3979XPL						
A3289DPL	A3389DPL						
	A3382XPL						
A3293TTP	A3393TTP						
	A3384						

One-piece = HA shank

^{*} Two-piece = HA shank HE shank

Walter Titex X-treme drill family

Workpiece material group

		Р	М	K	N	s	н	0		
Tool type	Remarks on field of application	Steel	Stainless steel	Cast iron	NF metals	Difficult-to-cut materials	Hard materials	Other	Drilling depth 2 x D _c	
Alpha® Rc	Solid carbide drill in accordance with DIN 6537 short without internal cooling Specially developed for hardened materials				••	••	••			
Alpha® Jet	- Straight flute solid carbide drill in accordance with DIN 6537 long, 8 and 12 x D _c with internal cooling - For short-chipping cast iron and aluminium materials			••	••	•		••		
X-treme D8D12	- Solid carbide deep-hole drill, 8 x D _c and 12 x D _c with internal cooling - D stands for "deep" - Can be used universally with high cutting data	••	••	••	••	••	••	•		
Alpha® 44	- Solid carbide drill 8 x D _c with internal cooling - UFL® profile - For universal use	••	•	•	••	••		••		
Alpha® 22	Solid carbide drill 8 x D _c without internal cooling UFL® profile For universal use	••		••	••	••				
X-treme Pilot Step 90	- Stepped pilot drill, specially designed for Alpha® 4 XD, X-treme D & DH and XD70 technology with internal cooling - 150° point angle - 90° countersink angle	••	••	••	••	••	••	••	K3281TFT	

Drilling depth

3 x D _c	5 x D _c	8 x D _c	12 x D _c	16 x D _c	20 x D _c	25 x D _c	30 x D _c
A3269TFL							
	A3387	A3487	A3687				
		A6489DPP	A6589DPP				
		*A3486TIP A3586TIP					
		A1276TFL					

One-piece = HA shank

^{*} Two-piece = HA shank HE shank

Walter Titex X-treme drill family

Workpiece material group

		P	М	K	N	S	Н	0		
Tool type	Remarks on field of application	Steel	Stainless steel	Cast iron	NF metals	Difficult-to-cut materials	Hard materials	Other	Drilling depth 2 x D _c	
XD Pilot	- Pilot drill, specially designed for Alpha® 4 XD, X-treme D & DH and XD70 technology with internal cooling - 150° point angle	••	••	••	••	••	••	••	A6181TFT	
X-treme Pilot 180	- Pilot drill, specially designed for Alpha® 4 XD, X-treme D & DH and XD70 technology with internal cooling - 180° point angle - Specially developed for inclined and convex surfaces	••	••	••	••	••	••	••	A7191TFT	
X treme Pilot 180C	- Pilot drill, specially designed for Alpha® 4 XD, X-treme D & DH and XD70 technology with internal cooling - Specially developed for inclined and convex surfaces - The conical design means that there is no shoulder between the pilot hole and the deep hole (important with crankshafts) - 180° point angle	••	••	••	••	••	••	••	K5191TFT	
Alpha® 4 XD1630	- Solid carbide deep-hole drill 16 to 30 x D with internal cooling - For universal use	••	••	••	••	••	•	••		
X-treme DH20-DH30	- Solid carbide deep-hole drill, 20 x D _c and 30 x D _c with internal cooling - D stands for "deep" - H stands for "heavy-duty materials" (steel that is difficult to cut), e.g. crankshafts	••	••	••	•	••	•			
X-treme D40–D50	- Solid carbide deep-hole drill, 40 x D _c and 50 x D _c with internal cooling - For universal use	••	•	••	••	•				

Drilling depth

3 x D _c	5 x D _c	8 x D _c	12 x D _c	16 x D _c	20 x D _c	25 x D _c	30 x D _c	40 x D _c	50 x D _c
				A6685TFP	A6785TFP	A6885TFP	A6985TFP		
					A6794TFP		A6994TFP		
								A7495TTP	A7595TTP

Internal coolant supply

Effect of the internal coolant supply

- Standard for solid carbide high-performance tools today
- Helical flow through the tool; the helix angle matches the course of the flutes
- The internal coolant supply has an effect on the tool (cutting edge) and aids the machining process directly (chip formation)

Coolant pressure required

- The coolant pressure required for Walter Titex solid carbide drills with internal cooling is 10 to 30 bar.
- The only exception is the Alpha® Jet type: The straight flutes require higher pressure (see diagram).

Internal coolant supply and chip removal

Comparison of a tool with helical flutes (Alpha® 4 XD20) and a tool with straight flutes (Alpha® Jet)

approx. 20 x D_C

Shank shapes

Shank DIN 6535 HA

- Parallel shank without flat
- Optimum concentricity
- First choice for solid carbide tools,
 HSC machining, deep-hole drilling and micromachining
- Suitable adaptors:
 - Hydraulic expansion chuck
 - Shrink-fit chuck

Shank DIN 6535 HE

- Parallel shank with flat
- Second choice for solid carbide tools

Suitable adaptors:

- Whistle-notch chuck
- Hydraulic expansion chuck with hush

Parallel shank

- Parallel shank with shank diameter the same as cutting diameter
- Most common shank design in HSS tools
- Rarely used in solid carbide tools

Suitable adaptors:

- Collet chuck

Tapered shank DIN 228 A (Morse taper)

- Tapered shank
- Used fairly frequently in HSS tools

Clamping devices

- Concentricity 0.003-0.005 mm
- Uniform wear and therefore longer service life
- Outstanding operational smoothness
- Especially suitable for solid carbide tools with standard shank shape HA
- Able to transfer high torques
- Outstanding process reliability
- Very good damping properties
- Optimum hole quality (surface, precision)
- Relatively dirt-resistant
- Easy to use
- Suitable for HSC machining

Shrink-fit chuck

- Concentricity 0.003-0.005 mm
- Very evenly distributed wear and therefore longer service life
- Outstanding operational smoothness
- Especially suitable for solid carbide tools with standard shank shape HA
- Suitable for HSC machining

Whistle-notch chuck

- Concentricity approx. 0.01 mm
- Especially suitable for HSS and solid carbide tools with standard shank shape HE
- Able to transfer high torques thanks to positive fit

Collet chuck

- Concentricity approx. 0.025 mm
- Especially suitable for HSS tools with parallel shank

Drilling operations

Operation	Subgroup	Description	Example
	Continuous drilling	Drilling into solid material. This is what the majority of drilling tools are designed for. Drilling tools are also often used as step drills in special applications.	
	Interrupted cut	Drilling into solid material. The drilling process is interrupted, e.g. because the tool meets a cross hole or the hole is being drilled through several components. In these cases, the stability of the tool is extremely important. It can be advantageous to have four lands.	
Drilling	"Rough" surface finish	Drilling into solid material. The top and/or bottom of the component to be machined is rough or uneven (e.g. curved or inclined	
	Hole entry on a curved surface	surfaces). In these cases, the stability of the tool is extremely important. It can be advantageous to have four lands. A pilot	
	Hole entry on an uneven or inclined surface	tool with a 180° point angle can be used if the hole entry is uneven.	
	Hole exit on an uneven or inclined surface		
Counter- boring	A hole has already further machining, There are special to drilling tools may pure drilling, varying chip data also need to bon edges of the dri		
Spot drilling	Drilling a hole for the	ne purpose of centring on NC machines, Iling operation.	
Centring	Drilling a hole for th operation.		
Counter- sinking	For countersinking and countersunk-h		
Reaming	For making holes w surface quality. The significantly better can be avoided by o requirements and b		

X-treme Plus, e.g. A3389DPL

X-treme D12, e.g. A6589DPP

X-treme, e.g. A3299XPL

Application	Limits/measures
Interrupted cut	Reduce the feed (approx. 0.25 to 0.5 x f)Use a tool with four lands
Curved surface	 Reduce the feed (approx. 0.25 to 0.5 x f) Use a tool with four lands If required, pilot drill or mill the surface (180°)
Hole entry on an inclined surface	 Reduce the feed (approx. 0.25 to 0.5 x f) Use a tool with four lands (inclination up to 5°) If required, pilot drill or mill the surface (inclination greater than 5°)
Hole exit on an inclined surface	Reduce the feed (approx. 0.25 to 0.5 x f) Use a tool with four lands Inclined surfaces up to 45° inclination possible

e.g. K1114

e.g. E6819TIN

e.g. F2481TMS

Surface quality

Factors affecting the surface quality

Under the same conditions, solid carbide tools produce better-quality surfaces than HSS tools.

In addition:

- The shorter the drill, the better the surface quality.
 Therefore the tool used should always be as short as possible this also applies to the accuracy of the hole.
- The feed has a significantly greater effect on the surface quality than the cutting speed.

Achievable surface quality using a solid carbide drill as an example

Operating parameters (drilling without centring):

Tool: X-treme D12 (A6589DPP)

Diameter: 10 mm
Drilling depth: 100 mm
Material: C45

Coolant: Emulsion 6%

 $v_c = 100 \text{ m/min}$ p = 20 bar

Accuracy of the drilled hole

Factors affecting the accuracy of the drilled hole

Under the same conditions, solid carbide tools create more accurate holes than HSS tools.

The factors that affect surface quality also affect the accuracy of the drilled hole (see previous page).

The measured values depicted below were obtained using the same tools and cutting data as on the previous page.

In this example, the tolerance class IT7 is achieved under optimum conditions.

Hole run-off

Hole run-off

Under the same conditions, solid carbide tools wander significantly less than HSS tools. Hole run-off increases with the length of the tool and the depth of the hole. This is the reason why the tool used should always be as short as possible.

The following table compares the deviations in position from the hole entry to the hole exit at a drilling depth of 30 x D_C for different types of tools.

Diameter: 8 mm
Drilling depth: 240 mm
Material: C45

Hole no.		XD Technology		Gun drill		HSS drill	
пон	2 110.	Х	Υ	Χ	Υ	Χ	Υ
1		0,02	0,04	0,00	0,03	0,05	-0,19
2		0,00	-0,02	0,02	0,08	0,45	-0,23
3		0,02	-0,05	-0,01	0,10	0,33	-0,23
4		0,04	-0,09	0,05	0,04	0,74	-0,41
5		0,08	0,05	0,00	0,09	0,74	-0,67
6		-0,05	0,09	0,07	0,05	0,60	-0,78
7		0,02	-0,06	-0,02	0,06	0,33	-027
8		-0,01	-0,07	0,04	0,03	-0,19	-0,25
9		-0,06	0,05	-0,03	0,14	-0,24	-0,09
Ave	rage	0,	046	0	,048	0	,380

H7 hole tolerance

Holes with an H7 tolerance class

Achieving an IT (International Tolerance) class of 7 (H7 is a very common tolerance for holes) with a drilling tool eliminates the need for subsequent fine machining, such as reaming, in many applications. The manufacturing tolerances of solid carbide drilling tools are inherently so small that this tolerance class could be achieved. However, the tool is only one aspect of the application that affects the accuracy of the drilled hole. The machine components and machining conditions all have an effect on the achievable accuracy of the drilled hole (see table).

	Influential factors	Example of the effect		
Hole	DiameterDrilling depth	Tolerance class IT 7 for diameters of 5 mm–12 µm, for diameters of 12 mm–18 µm		
Machine	Stability under dynamic load Stability under thermal load Level of maintenance Controller Measuring sensor	The more stable the machine, the more accurate the operation. The same applies to the accuracy of the controller and the measuring sensor in the machine.		
Spindle	Concentricity Stability under dynamic load Stability under thermal load Level of maintenance	Extremely good concentricity is required and the condition of the spindle must be known.		
Clamping devices	Design type Concentricity Stability under dynamic load Stability under thermal load Level of maintenance	Not every clamping device can be used for high-precision machining. A hydraulic expansion chuck is the first choice when drilling (also see HB "Clamping devices" section on page 73).		
Tool	Material (e.g. HSS or solid carbide) Tool geometry, e.g. point grinding and the number of lands Manufacturing tolerances Level of wear	Solid carbide tools achieve higher degrees of accuracy than HSS tools. The level of wear plays a very large role.		
Cutting data	Correct cutting speed Correct feed Chip removal Coolant	Incorrect cutting data can result in imprecise holes. The feed has a greater effect on the hole than the cutting speed.		
Workpiece	Material Condition of the material, e.g. homogeneity Cross holes Surface quality Inclined hole entry and/or hole exit Stability, e.g. wall thickness Stability under dynamic load Stability under thermal load	The shape and the material have a considerable effect on the accuracy of the drilled hole.		
Clamping arrange- ment	Stability under dynamic load Stability under thermal load	A poor clamping arrangement has a significant effect on the accuracy.		

Coolant / MOL / dry

Use of coolants

Use of tools with internal and external cooling

(usually emulsion containing 5-7% oil)

The "active" area on the tool is rinsed with coolant

The coolant is circulated and re-used

MQL – Minimum quantity lubrication (usually with an internal coolant supply)

- A small quantity of coolant is supplied directly to the cutting edge
- There is no closed circuit the coolant is used up almost completely;
 the component, the chips and the tool are virtually dry after machining.
- Compressed air is normally used as a carrier medium

Dry machining

- No lubricant used at all; cooling with compressed air if required

For materials suitable for MQL/dry machining

- Brass allovs
- Magnesium alloys
- Cast iron materials
- Aluminium alloys (mainly cast alloys)

Dry machining of steel materials

For tools suitable for MQL/dry machining

- Most tools from the Alpha® and X-treme families are suitable
- An optimised elliptical or round shank end should be used with MQL machining (see image)

MOI shank ends

DIN 69090

elliptical shape

round shape

Advantages of MQL/dry machining

- More environmentally friendly than conventional cooling lubricant as coolant is not used
- Less of a health hazard as operators are not exposed to biocides in cooling lubricants
- No disposal costs

Requirements for MQL/dry machining

Component

- Material (see opposite page)
- Wall thickness (due to possible deformation caused by heat)

Tool (see cutting data tables)

- Special tool with shank end optimised for MQL machining, if required

Machine

- Prevention of localised temperature increases
- Minimum quantity lubrication (single-channel or dual-channel system)
- The processing of chips must be optimised for dry machining, as a significant proportion of the heat generated by the chips must be removed
- Chips must not be washed away by the coolant

HSC/HPC machining

What does HSC/HPC machining stand for?

HSC stands for High-Speed Cutting, i.e. machining at high speeds. The term is most often used with milling cutters. With milling, HSC mainly involves increasing cutting speeds at small axial and radial cutting depths. Large surfaces are machined in a short space of time.

HPC stands for High-Performance Cutting, i.e. increasing the metal removal rate. High-performance drilling therefore usually involves HPC machining, as both the cutting speed and the feed are optimised and increased in order to obtain the highest possible feed rate and therefore productivity.

Tools suitable for HPC machining

- Solid carbide drills
 - With high-performance coatings (with a few exceptions, e.g. uncoated tools when drilling short-chipping aluminium)
 - Tools with internal cooling (drilling depths greater than approx. 2 x Dc)
 - Optimised geometry with a high degree of stability and the lowestpossible cutting force
- Tools from the Walter Titex X-treme family are suitable
- Extremely high cutting data are achieved with X-treme Plus (universal use), X-treme lnox (for stainless materials) and X-treme CI (for cast iron materials) at drilling depths of up to $5 \times D_C$
- For greater drilling depths, the X-treme D8 and D12 for drilling depths of 8 x D_C and 12 x D_C are the most suitable
- For even greater drilling depths of up to 50 x D_C , the Alpha® 4 XD16 to Alpha® 4 XD30 and the X-treme D40/D50 are suitable tools

Advantages of HSC/HPC machining

- Highest possible metal removal rate
- Increased productivity reduces machining costs
- Spare machine capacity
- Fast job handling

Requirements for HSC/HPC machining

Component

- Suitable material
- High degree of stability (→ low deformation under high cutting forces)

Tool (see page to the left and cutting data tables)

Machine

- High degree of stability
- Fast axes
- High drive power
- Little change in shape caused by heat transfer
- Internal cooling is required with a few exceptions

Deep-hole drilling - Pilot holes

Walter Titex solid carbide deep-hole drills

Walter Titex has been making solid carbide deep-hole drills since 2003. Drilling depths of 30 x D_C were reliably achieved as early as 2005. Drilling depths of up to $70 \times D_C$ have been achieved since 2010 (see HB "Product information – Solid carbide drills – Walter Titex XD70 Technology" section on page 32).

Deep-hole drilling using Walter Titex carbide tools is always without pecking, i.e. the drilling operation is not interrupted.

The pilot hole

The pilot hole has a significant effect on:

- Process reliability
- Hole quality
- Service life of the deep-hole drill

A pilot hole should be drilled when the final drilling depth will be $16 \times D_C$ or more. Essentially, a pilot hole can be created with any solid carbide tool that has the same point angle as the deep-hole drill to be used subsequently. Its diameter must also be the same as that of the deep-hole drill.

Walter Titex pilot drills

Walter Titex deep-drilling technology encompasses not only solid carbide deep-hole drills but also special pilot drills (see HB "Product information

- Solid carbide drills Other Walter Titex pilot drills" section on page 31).
 Walter Titex pilot drills have the following advantages over "conventional" carbide drills:
- Higher degree of stability
- Point angle adjusted to the application
- Diameter tolerance adjusted to the application
- Special conical design

These properties offer the following benefits:

- Even greater process reliability
- Further optimised hole quality
- Significantly longer service life of the deep-hole drills thanks to protection of the peripheral cutting edges and "soft" spot drilling of the deep-hole drills (see image above)

Drilling strategy 1: XD Technology $\leq 30 \times D_c$

suitable for: - A6685TFP - A6985TFP - A6785TFP - A6794TFP - A6885TFP - A6994TFP Pilot drilling 10-30 bar 2 x D_c A6181TFT A7191TFT K5191TFT K3281TFT 2 x D_c 2 Feeding in off XD Technology 1.5 x D_C $n_{max} = 100 \text{ rpm}$ $v_f = 1000 \text{ mm/min}$ Spot drilling 10-30 bar **XD Technology** 3 x D_c $v_c = 25 - 50\%$ $v_{f} = 25 - 50\%$ Deep-hole drilling 10-30 bar **XD Technology** $v_c = 100\%$ $v_f = 100\%$ off Retracting XD Technology $n_{max} = 100 \text{ rpm}$ $v_f = 1000 \text{ mm/min}$

 $V_c / V_f \rightarrow \bigoplus GPS$

Drilling strategy 2: XD Technology \leq 30 x D_c

Drilling strategy 3: XD Technology \leq 50 x D_c

suitable for:							
– A7495TTP							
– A7595TTP	Р	М	K	N	S	Н	0
– Special boring tools up to 50 x D _c			<u></u>	<i>J</i>			
	•		•	•			
Pilot drilling 1		10-30 ba	ar	2 x E A618	O _c		
2 x D _C					1TFT B1TFT		
Pilot drilling 2	1	10-30 ba	ar	12 x A658	D _C		
12 x D _C							
3 Feeding in	46	off		XD T	echnol	ogy	
2 x D _C				rota n _{max}			е
4 Feeding in	46	off			echnol		
11.5 x D _C				with rotat n _{max}	clockw	pm	1
5 Deep-hole drilling		20-40 b	ar	XD T	echnol	ogy	
					100% 100%		
6 Retracting	<u></u>	off		XD T	echnol	ogy	
					100		
					= 100 r 1000 m		

Drilling strategy 4: XD Technology \leq 50-70 x D_c

suitable for:		Р	М	K	N	S	Н	0
– Special boring tools ≥ 50 x D _c		✓		✓	✓			
Pilot drilling 1	<u>ļ</u>	10)-30 ba n	ır	2 x D A618 A719 K328	ITFT ITFT		
Pilot drilling 2	Ļ	10)-30 ba	ır	20 x	D _c		
← 20 x D _C	_	0	n		A678	5TFP		
3 Feeding in	4	6	ff		XD T	echnolo	ogy	
2 x D _c					rotat n _{max} :			e
4 Piloting	L	6	ff			echnolo		
19.5 x D _C					with rotat n _{max} :	clockw	pm	1
Deep-hole drilling	L	21	0-40 ba n	ar	XD T	echnolo	ogy	
						100% 100%		
6 Retracting	L	6	ff		XD T	echnol	ogy	
—————————————————————————————————————		_				= 100 r 1000 m		
	V _c / V	r → 🗬 (PS					

Drilling strategy 5: Micro XD Technology \leq 30 x D_c

suitable for:								
– A6489AMP – A6789AMP								
– A6589AMP – A6889AMP		Р	М	K	N	S	Н	0
– A6689AMP – A6989AMP		√	√	√	√	√	√	√
1 Pilot drilling	Ļ		0-30 ba n	ar	2 x E A618) _c 1AML		
2 x D _c								
2 Feeding in	Ļ	Ы .	ff		XD T	echnolo	ogy	
1.5 x D _c					n _{max} : v _f = :	= 100 r 1000 m	pm m/min	
3 Deep-hole drilling	Ļ	3 /	0-30 ba n	ar	XD T	echnolo	ogy	
						100% 100%		
5 Retracting	Ļ	<i>₩</i> .	ff		XD T	echnolo	ogy	
—					n _{max} : v _f = :	= 100 r 1000 m	pm m/min	

 $V_c / V_f \rightarrow \bigcirc GPS$

Deep-hole drilling - Solid carbide and gun drills

Comparing solid carbide deep-hole drills and gun drills

Drilling deep holes using gun drills is a common and reliable procedure.

In many applications, these tools can be replaced with solid carbide deep-hole drills. This enables the machining speed

and therefore productivity levels to be increased enormously, as in some cases higher feed rates can be achieved using helical solid carbide drills (see image).

In addition to increasing productivity, using **Walter Titex** solid carbide deep-hole drills has the following positive effects on the production of parts/components with deep holes:

- Shortened process chain
- Complete machining in one clamping arrangement
- No outsourcing required
- Shorter lead times
- High versatility
- Easy to use
- No particular requirements on cooling lubricant
- No particular requirements on the coolant pressure

- Sealing of the work room is not necessary thanks to the low level of coolant pressure required
- No investment in deep-drilling machines required
- Use on machining centres
- No need to purchase drill bushes, steady-rest bushes or sealing rings
- No problems with cross holes

Micromachining

Walter Titex solid carbide micro-drills

Walter Titex offers a comprehensive range of drilling tools for use in micromachining. The smallest solid carbide high-performance tools have a diameter of 0.5 mm without an internal coolant supply and a diameter of 0.75 mm with an internal coolant supply (see "Tools – Solid carbide – Micromachining" section). The largest micro-tool has a diameter of 2.99 mm.

The range includes internally cooled and externally cooled tools. Drilling depths of up to 30 x D_C can be achieved with tools from the catalogue range. Externally cooled Alpha® 2 Plus Micro tools can even achieve drilling depths of up to 8 x D_C in many materials without pecking.

The dimensions of the tools are adjusted to the particular conditions when drilling small-diameter holes in accordance with Walter Titex standards. A longer shank ensures that the tool is not obscured by the clamping device (visual check). This also allows any potential interference contours to be avoided.

Solid carbide high-performance tools for small diameters are available in both the established Alpha® range and the newer X-treme drill family (see HB "Product information – Solid carbide drills – Walter Titex X-treme M, DM8..30" section from page 28 onwards).

The following points should be taken into consideration when using solid carbide micro-drills:

- The coolant must be filtered (filter size < 20 μ m, typical size 5 μ m)
- A coolant pressure of 20 bar is sufficient, higher pressures are possible
- There is a risk of the coolant pumps overheating due to the small volume of fluid flowing through them
- Use oil or emulsion as a coolant
- The surfaces of the workpieces should be as flat and smooth as possible, as bumps generate higher lateral forces (risk of the tool breaking or rapid wear)
- The use of hydraulic-expansion adaptors or shrink-fit adaptors is recommended
- The drilling strategy should always be followed when drilling deep holes (see page 86 onwards) and the correct X-treme Pilot 150 pilot tool used (type A6181AML).

Wear

Optimum time for regrinding

Tool stopped at the last minute

The peripheral cutting edge will soon break, which then poses a risk to the components

Condition shortly before the end of the tool's service life

Components at risk

Optimum time

The tool can be reconditioned several times

Chisel edge wear

Action

- Send for reconditioning

Shortening of the tool

 Approx. 0.3 to 0.5 mm depending on wear

Wear on the peripheral cutting edge

Action

- Send for reconditioning

Shortening of the tool

 Approx. 0.3 to 0.5 mm depending on wear

Severe wear on the main and peripheral cutting edges

Action

- Remove the tool from the machine sooner
- Send for reconditioning

Shortening of the tool

 Approx. 1.0 mm below the chamfer wear

Wear

Wear on the chamfers

Action

- Remove the tool from the machine sooner
- The chamfer is deformed
- Send for reconditioning

Shortening of the tool

 Depends on the damage to the chamfers

Wear on the chisel edge and main cutting edge

Action

- Send for reconditioning

Shortening of the tool

0.5 mm under the peripheral cutting edge

Extreme material deposits and chipping

Action

- Remove deposits
- Send for reconditioning

Shortening of the tool

 Approx. 0.3 to 0.5 mm depending on wear

Chipping at the corners of the main cutting edge

Action

- Shortening of the tool and grinding of a new point
- Send for reconditioning

Shortening of the tool

- At least 1 mm under the chipping

Cracks/chipping on the chamfer

Action

- Send for reconditioning

Shortening of the tool

- Grinding of a new point

Wear

Chipping on the peripheral cutting edges

Action

- Remove the tool from the machine sooner
- Send for reconditioning

Shortening of the tool

- 1.0 mm below the chipping

Chipping on the chamfer

Action

- Send for reconditioning

Shortening of the tool

 Set the tip back until the damage has been removed completely

Deposits on the main cutting edge with damage

Action

Send for reconditioning

Shortening of the tool

Regrind the point, shorten by approx.
 0.3 to 0.5 mm depending on wear

Deposits on the chamfer with damage

Action

- Send for reconditioning

Shortening of the tool

- Shorten and recondition the tool

Problems - Causes - Solutions

Chipped peripheral cutting edges

- Excessive edge wear causing the corner to chip
 - · Recondition promptly
- Workpiece springs up when throughhole drilling, tool therefore catches
 - Reduce the feed rate for through-hole drilling (-50%)
- Inclined exit during through-hole drilling results in interrupted cut
 - Reduce the feed rate for through-hole drilling (- 50%)
- Through-hole drilling of a cross hole results in interrupted cut
 - Reduce the feed rate for throughdrilling of the cross hole (-50% to -70%)
- Centring with too small a point angle, tool therefore drilling with the edges first
 - Pre-centre with point angle > point angle of drill
- Mechanical overload of peripheral cutting edges
 - Reduce the feed
- Material has hard surface
- Reduce the feed rate and cutting speed for drilling on entry (and, if applicable, on exit if hard on both sides) (-50% in both cases)
- Material too hard
- Use special tool for hard/ hardened materials

Destroyed peripheral cutting edges

- Excessive edge wear
 - Recondition promptly
- Peripheral cutting edges overheated
 - Reduce the cutting speed

Centre region destroyed

- Excessive wear in the centre causing it to chip
 - · Recondition promptly
- Mechanical overload of point
 - Reduce the feed
- Material has hard surface
 - Reduce the feed rate and cutting speed for drilling on entry (-50%)
- Material too hard
 - Use special tool for hard/ hardened materials

Problems - Causes - Solutions

Drill bit breakage

- Excessive wear causing breakage due to overloading
 - · Recondition promptly
- Chip accumulation
 - Check that the flute length is at least equal to drilling depth +1.5 x d
 - Use a drill bit with better chip transport properties
- Drill bit wanders on entry
 (e.g. because bit is too long, entry surface is not flat, entry surface is inclined)
 - · Centre or pilot drill
- On lathes: Alignment error between rotary axis and drill axis
 - Use an HSS(-E) drill bit or a drill bit with a steel shank instead of a solid carbide tool
- Workpiece not clamped with adequate stability
 - Improve workpiece clamping

Chipping on cylindrical lands

- Handling error
- Keep tools in their original packaging
- Keep tools apart/prevent contact between them

Hole too large

- Excessive centre wear or irregular wear
 - · Recondition promptly
- Drill bit wanders on entry (e.g. because bit is too long, entry surface is not flat, entry surface is inclined)
 - Centre-mark
- Concentricity error of the chuck or the machine spindle
 - Use a hydraulic expansion chuck or shrink-fit chuck
 - Check and repair the machine spindle
- Workpiece not clamped with adequate stability
 - · Improve workpiece clamping

Hole too small

- Excessive wear of cylindrical lands or edges
 - · Recondition promptly
- Hole not round
 - · Reduce the cutting speed

Problems - Causes - Solutions

Poor surface finish

- Excessive wear of the peripheral cutting edge or cylindrical lands
 - · Recondition promptly
- Chip accumulation
 - Check that the flute length is at least equal to drilling depth +1.5 x d
 - Use a drill bit with better chip transport properties

Poor chip formation

- Excessive wear of the main cutting edge affecting chip formation
 - Recondition promptly
- Chips are too thin as the feed rate is too low
 - Increase the feed
- Inadequate cooling causing the chips to overheat
 - Use internal cooling instead of external cooling
 - Increase the pressure of the internal coolant supply
 - Program interruptions in the feed motion, if necessary

Burr on the hole exit

- Excessive wear on the peripheral cutting edge
 - Recondition promptly

Entry position outside tolerance

- Excessive centre wear
 - Recondition promptly
- Drill bit wanders on entry (e.g. because bit is too long, entry surface is not flat, entry surface is inclined)
 - Centre-mark

Drilling calculation formulae

Speed

$$n = \frac{v_c \times 1000}{D_c \times \pi} \quad [min^{\text{-}1}]$$

Cutting speed

$$v_c = \frac{D_c \times \pi \times n}{1000}$$
 [m/min]

Feed per revolution

$$f = f_Z \times z$$
 [mm]

Feed rate

$$v_f = f \times n$$
 [mm/min]

Metal removal rate (continuous drilling)

$$Q = \frac{v_f \times \pi \times D_c^2}{4 \times 1000} \text{ [cm}^3/\text{min]}$$

Power requirement

$$P_{mot} = \frac{Q \times k_C}{60000 \times \eta} \quad [kW]$$

Torque

$$M_C = \frac{D_C^2 \times k_C \times f}{8000} = \frac{P_C \times 9500}{n} [Nm]$$

Feed force

$$F_f = 0.63 \times \frac{f \times D_C \times k_C}{2} \quad [N]$$

Specific cutting force

$$k_C = \frac{k_{C1.1}}{h^{m_C}}$$

Chip thickness

$$h = f_Z \times sin\kappa$$
 [mm]

n	Speed	rpm
D _c	Cutting diameter	mm
Z	Number of teeth	
V _c	Cutting speed	m/min
V _f	Feed rate	mm/min
$\frac{V_f}{f_z}$	Feed per tooth	mm
f	Feed per revolution	mm
A	Chip cross section	mm²
Q	Metal removal rate	cm³/min
P _{mot}	Power requirement	kW
M.	Torque	Nm
F _f	Feed force	N
h	Chip thickness	mm
k _c	Specific cutting force	N/mm²
η	Machine efficiency (0.7 – 0.95)	
К	Approach angle	0
k _{c1.1} *	Specific cutting force for 1 mm² chip cross section with h = 1 mm	N/mm²
m _c *	Increase in the k _c curve	

* For $\rm m_{_{\rm c}}$ and $\rm k_{_{c\,1.1}}$ see table in GK on page H 7

Hardness comparison table

Tensile strength Rm in N/mm²	Brinell hardness HB	Rockwell hardness HRC	Vickers hardness HV	PSI
150	50		50	22
200	60		60	29
250	80		80	37
300	90		95	43
350	100		110	50
400	120		125	58
450	130		140	66
500	150		155	73
550	165		170	79
600	175		185	85
650	190		200	92
700	200		220	98
750	215		235	105
800	230	22	250	112
850	250	25	265	120
900	270	27	280	128
950	280	29	295	135
1000	300	31	310	143
1050	310	33	325	150
1100	320	34	340	158
1150	340	36	360	164
1200	350	38	375	170
1250	370	40	390	177
1300	380	41	405	185
1350	400	43	420	192
1400	410	44	435	200
1450	430	45	450	207
1500	440	46	465	214
1550	450	48	480	221
1600	470	49	495	228
		51	530	247
		53	560	265
		55	595	283
		57	635	
		59	680	
		61	720	
		63	770	
		64	800	
		65	830	
		66	870	
		67	900	
		68	940	
		69	980	

Thread tapping core diameters

${f M}$ ISO metric coarse pitch thread

Designation (DIN 13)		Female thread core diameter (mm)			
(DIN 13)	min	6H max	(mm)		
M 2	1,567	1,679	1,60		
M 2,5	2,013	2,138	2,05		
M 3	2,459	2,599	2,50		
M 4	3,242	3,422	3,30		
M 5	4,134	4,334	4,20		
M 6	4,917	5,153	5,00		
M 8	6,647	6,912	6,80		
M 10	8,376	8,676	8,50		
M 12	10,106	10,441	10,20		
M 14	11,835	12,210	12,00		
M 16	13,835	14,210	14,00		
M 18	15,294	15,744	15,50		
M 20	17,294	17,744	17,50		
M 24	20,752	21,252	21,00		
M 27	23,752	24,252	24,00		
M 30	26,211	26,771	26,50		
M 36	31,670	32,270	32,00		
M 42	37,129	37,799	37,50		

MF ISO metric fine pitch thread

Designation (DIN 13)	Female thre	Drill size (mm)	
(DIN 13)	min	6H max	(111111)
M 6 x 0,75	5,188	5,378	5,25
M 8 x 1	6,917	7,153	7,00
M 10 x 1	8,917	9,153	9,00
M 10 x 1,25	8,647	8,912	8,75
M 12 x 1	10,917	11,153	11,00
M 12 x 1,25	10,647	10,912	10,75
M 12 x 1,5	10,376	10,676	10,50
M 14 x 1,5	12,376	12,676	12,50
M 16 x 1.5	14,376	14,676	14,50
M 18 x 1.5	16,376	16,676	16,50
M 20 x 1.5	18,376	18,676	18,50
M 22 x 1,5	20,376	20,676	20,50

UNC Unified Coarse Thread

Designation (ASME B 1.1)	Female threa (I min	Drill size (mm)	
No. 2-56	1.694	2B max 1.872	1.85
110. 2-30	•		
No. 4-40	2,156	2,385	2,35
No. 6-32	2,642	2,896	2,85
No. 8-32	3,302	3,531	3,50
No. 10-24	3,683	3,962	3,90
¹ / ₄ -20	4,976	5,268	5,10
⁵ / ₁₆ -18	6,411	6,734	6,60
³ / ₈ -16	7,805	8,164	8,00
¹/ ₂ -13	10,584	11,013	10,80
⁵ / ₈ -11	13,376	13,868	13,50
³ / ₄ -10	16,299	16,833	16,50

UNF Unified Fine Thread

Designation (ASME B 1.1)	Female thread core diameter (mm)		Drill size (mm)
(ASIVIE D 1.1)	min	2B max	(11111)
No. 4-48	2,271	2,459	2,40
No. 6-40	2,819	3,023	2,95
No. 8-36	3,404	3,607	3,50
No. 10-32	3,962	4,166	4,10
1/4 -28	5,367	5,580	5,50
⁵ / ₁₆ -24	6,792	7,038	6,90
³ / ₈ -24	8,379	8,626	8,50
¹ / ₂ -20	11,326	11,618	11,50
⁵ / ₈ -18	14,348	14,671	14,50

G Pipe thread

Designation (DIN EN ISO 228)	Female thread core diameter (mm)		Drill size (mm)
	min	max	(111111)
G 1/8	8,566	8,848	8,80
G 1/4	11,445	11,890	11,80
G 3/8	14,950	15,395	15,25
G 1/2	18,632	19,173	19,00
G ⁵ / ₈	20,588	21,129	21,00
G 3/4	24,118	24,659	24,50
G 1	30,292	30,932	30,75

Thread forming core diameters

M ISO metric coarse pitch thread

Designation (DIN 13)	Female thread core diameter (DIN 13-50) (mm)		Pilot drill size (mm)
	min	7H max	(111111)
M 1,6	1,221	-	1,45
M 2	1,567	1,707	1,82
M 2,5	2,013	2,173	2,30
M 3	2,459	2,639	2,80
M 3,5	2,850	3,050	3,25
M 4	3,242	3,466	3,70
M 5	4,134	4,384	4,65
M 6	4,917	5,217	5,55
M 8	6,647	6,982	7,40
M 10	8,376	8,751	9,30
M 12	10,106	10,106	11,20
M 14	11,835	12,310	13,10
M 16	13,835	14,310	15,10

MF ISO metric fine pitch thread

Designation (DIN 13)	Female thread core diameter (DIN 13-50) (mm)		Pilot drill size (mm)
	min	7H max	(111111)
M 6 x 0,75	5,188	5,424	5,65
M 8 x 1	6,917	7,217	7,55
M 10 x 1	8,917	9,217	9,55
M 12 x 1	10,917	11,217	11,55
M 12 x 1,5	10,376	10,751	11,30
M 14 x 1,5	12,376	12,751	13,30
M 16 x 1.5	14,376	14,751	15,30

www.walter-tools.com

Walter GB Ltd.

Bromsgrove, England

+44 (1527) 839 450, service.uk@walter-tools.com

Walter Kesici Takımlar Sanayi ve Ticaret Ltd. Şti. Istanbul, Türkiye

+90 (216) 528 1900 Pbx, service.tr@walter-tools.com

Walter Wuxi Co. Ltd.

Wuxi, Jiangsu, P.R. China

+86 (510) 8241 9399, service.cn@walter-tools.com

Walter AG Singapore Pte. Ltd.

+65 6773 6180, service.sg@walter-tools.com

Walter Korea Ltd.

Anyang-si Gyeonggi-do, Korea

+82 (31) 337 6100, service.kr@walter-tools.com

Walter Tools India Pvt. Ltd.

Pune. India

+91 (20) 3045 7300, service.in@walter-tools.com

Walter (Thailand) Co., Ltd. Bangkok, 10120, Thailand

+66 2 687 0388, service.th@walter-tools.com

Walter Malaysia Sdn. Bhd.

Selangor D.E., Malaysia

+60 (3) 8023 7748, service.my@walter-tools.com

Walter Tooling Japan K.K.

Nagoya, Japan

+81 (52) 723 5800, service.jp@walter-tools.com

Walter USA, LLC

Waukesha WI, USA

+1 800-945-5554, service.us@walter-tools.com

Walter Canada

Mississauga, Canada service.ca@walter-tools.com+43 (1) 5127300-0